dbcsr_tensor.F Source File


Source Code

# 1 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F" 1
!--------------------------------------------------------------------------------------------------!
! Copyright (C) by the DBCSR developers group - All rights reserved                                !
! This file is part of the DBCSR library.                                                          !
!                                                                                                  !
! For information on the license, see the LICENSE file.                                            !
! For further information please visit https://dbcsr.cp2k.org                                      !
! SPDX-License-Identifier: GPL-2.0+                                                                !
!--------------------------------------------------------------------------------------------------!

MODULE dbcsr_tensor
   !! DBCSR tensor framework for block-sparse tensor contraction.
   !! Representation of n-rank tensors as DBCSR tall-and-skinny matrices.
   !! Support for arbitrary redistribution between different representations.
   !! Support for arbitrary tensor contractions
   !! \todo implement checks and error messages

# 1 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.fypp" 1
# 9 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.fypp"

# 241 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.fypp"
# 18 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F" 2
# 19 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
# 20 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

   USE dbcsr_allocate_wrap, ONLY: &
      allocate_any
   USE dbcsr_array_list_methods, ONLY: &
      get_arrays, reorder_arrays, get_ith_array, array_list, array_sublist, check_equal, array_eq_i, &
      create_array_list, destroy_array_list, sizes_of_arrays
   USE dbcsr_api, ONLY: &
      dbcsr_type, dbcsr_iterator_type, dbcsr_iterator_blocks_left, &
      dbcsr_iterator_next_block, dbcsr_iterator_start, dbcsr_iterator_stop, &
      dbcsr_transpose, dbcsr_no_transpose, dbcsr_scalar, dbcsr_put_block, &
      dbcsr_type_real_8, dbcsr_type_real_4, dbcsr_type_complex_8, dbcsr_type_complex_4, dbcsr_clear, &
      dbcsr_release, dbcsr_desymmetrize, dbcsr_has_symmetry
   USE dbcsr_tas_types, ONLY: &
      dbcsr_tas_split_info
   USE dbcsr_tas_base, ONLY: &
      dbcsr_tas_copy, dbcsr_tas_finalize, dbcsr_tas_get_data_type, dbcsr_tas_get_info, dbcsr_tas_info
   USE dbcsr_tas_mm, ONLY: &
      dbcsr_tas_multiply, dbcsr_tas_batched_mm_init, dbcsr_tas_batched_mm_finalize, dbcsr_tas_result_index, &
      dbcsr_tas_batched_mm_complete, dbcsr_tas_set_batched_state
   USE dbcsr_tensor_block, ONLY: &
      dbcsr_t_iterator_type, dbcsr_t_get_block, dbcsr_t_put_block, dbcsr_t_iterator_start, &
      dbcsr_t_iterator_blocks_left, dbcsr_t_iterator_stop, dbcsr_t_iterator_next_block, &
      ndims_iterator, dbcsr_t_reserve_blocks, block_nd, destroy_block
   USE dbcsr_tensor_index, ONLY: &
      dbcsr_t_get_mapping_info, nd_to_2d_mapping, dbcsr_t_inverse_order, permute_index, get_nd_indices_tensor, &
      ndims_mapping_row, ndims_mapping_column, ndims_mapping
   USE dbcsr_tensor_types, ONLY: &
      dbcsr_t_create, dbcsr_t_get_data_type, dbcsr_t_type, ndims_tensor, dims_tensor, &
      dbcsr_t_distribution_type, dbcsr_t_distribution, dbcsr_t_nd_mp_comm, dbcsr_t_destroy, &
      dbcsr_t_distribution_destroy, dbcsr_t_distribution_new_expert, dbcsr_t_get_stored_coordinates, &
      blk_dims_tensor, dbcsr_t_hold, dbcsr_t_pgrid_type, mp_environ_pgrid, dbcsr_t_filter, &
      dbcsr_t_clear, dbcsr_t_finalize, dbcsr_t_get_num_blocks, dbcsr_t_scale, &
      dbcsr_t_get_num_blocks_total, dbcsr_t_get_info, ndims_matrix_row, ndims_matrix_column, &
      dbcsr_t_max_nblks_local, dbcsr_t_default_distvec, dbcsr_t_contraction_storage, dbcsr_t_nblks_total, &
      dbcsr_t_distribution_new, dbcsr_t_copy_contraction_storage, dbcsr_t_pgrid_destroy
   USE dbcsr_kinds, ONLY: &
      real_4, real_8, default_string_length, int_8, dp
   USE dbcsr_mpiwrap, ONLY: &
      mp_environ, mp_max, mp_comm_free, mp_cart_create, mp_sync, mp_comm_type
   USE dbcsr_toollib, ONLY: &
      sort
   USE dbcsr_tensor_reshape, ONLY: &
      dbcsr_t_reshape
   USE dbcsr_tas_split, ONLY: &
      dbcsr_tas_mp_comm, rowsplit, colsplit, dbcsr_tas_info_hold, dbcsr_tas_release_info, default_nsplit_accept_ratio, &
      default_pdims_accept_ratio, dbcsr_tas_create_split
   USE dbcsr_data_types, ONLY: &
      dbcsr_scalar_type
   USE dbcsr_tensor_split, ONLY: &
      dbcsr_t_split_copyback, dbcsr_t_make_compatible_blocks, dbcsr_t_crop
   USE dbcsr_tensor_io, ONLY: &
      dbcsr_t_write_tensor_info, dbcsr_t_write_tensor_dist, prep_output_unit, dbcsr_t_write_split_info
   USE dbcsr_dist_operations, ONLY: &
      checker_tr
   USE dbcsr_toollib, ONLY: &
      swap

#include "base/dbcsr_base_uses.f90"

   IMPLICIT NONE
   PRIVATE
   CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'dbcsr_tensor'

   PUBLIC :: &
      dbcsr_t_contract, &
      dbcsr_t_copy, &
      dbcsr_t_get_block, &
      dbcsr_t_get_stored_coordinates, &
      dbcsr_t_inverse_order, &
      dbcsr_t_iterator_blocks_left, &
      dbcsr_t_iterator_next_block, &
      dbcsr_t_iterator_start, &
      dbcsr_t_iterator_stop, &
      dbcsr_t_iterator_type, &
      dbcsr_t_put_block, &
      dbcsr_t_reserve_blocks, &
      dbcsr_t_copy_matrix_to_tensor, &
      dbcsr_t_copy_tensor_to_matrix, &
      dbcsr_t_contract_index, &
      dbcsr_t_batched_contract_init, &
      dbcsr_t_batched_contract_finalize

CONTAINS

   SUBROUTINE dbcsr_t_copy(tensor_in, tensor_out, order, summation, bounds, move_data, unit_nr)
      !! Copy tensor data.
      !! Redistributes tensor data according to distributions of target and source tensor.
      !! Permutes tensor index according to `order` argument (if present).
      !! Source and target tensor formats are arbitrary as long as the following requirements are met:
      !! * source and target tensors have the same rank and the same sizes in each dimension in terms
      !!   of tensor elements (block sizes don't need to be the same).
      !!   If `order` argument is present, sizes must match after index permutation.
      !! OR
      !! * target tensor is not yet created, in this case an exact copy of source tensor is returned.

      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_in, tensor_out
         !! Source
         !! Target
      INTEGER, DIMENSION(ndims_tensor(tensor_in)), &
         INTENT(IN), OPTIONAL                        :: order
         !! Permutation of target tensor index. Exact same convention as order argument of RESHAPE intrinsic
      LOGICAL, INTENT(IN), OPTIONAL                  :: summation, move_data
      INTEGER, DIMENSION(2, ndims_tensor(tensor_in)), &
         INTENT(IN), OPTIONAL                        :: bounds
         !! crop tensor data: start and end index for each tensor dimension
      INTEGER, INTENT(IN), OPTIONAL                  :: unit_nr
      INTEGER :: handle

      CALL mp_sync(tensor_in%pgrid%mp_comm_2d)
      CALL timeset("dbcsr_t_total", handle)

      ! make sure that it is safe to use dbcsr_t_copy during a batched contraction
      CALL dbcsr_tas_batched_mm_complete(tensor_in%matrix_rep, warn=.TRUE.)
      CALL dbcsr_tas_batched_mm_complete(tensor_out%matrix_rep, warn=.TRUE.)

      CALL dbcsr_t_copy_expert(tensor_in, tensor_out, order, summation, bounds, move_data, unit_nr)
      CALL mp_sync(tensor_in%pgrid%mp_comm_2d)
      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_copy_expert(tensor_in, tensor_out, order, summation, bounds, move_data, unit_nr)
      !! expert routine for copying a tensor. For internal use only.
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_in, tensor_out
      INTEGER, DIMENSION(ndims_tensor(tensor_in)), &
         INTENT(IN), OPTIONAL                        :: order
      LOGICAL, INTENT(IN), OPTIONAL                  :: summation, move_data
      INTEGER, DIMENSION(2, ndims_tensor(tensor_in)), &
         INTENT(IN), OPTIONAL                        :: bounds
      INTEGER, INTENT(IN), OPTIONAL                  :: unit_nr

      TYPE(dbcsr_t_type), POINTER                    :: in_tmp_1, in_tmp_2, &
                                                        in_tmp_3, out_tmp_1
      INTEGER                                        :: handle, unit_nr_prv
      INTEGER, DIMENSION(:), ALLOCATABLE             :: map1_in_1, map1_in_2, map2_in_1, map2_in_2

      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_copy'
      LOGICAL                                        :: dist_compatible_tas, dist_compatible_tensor, &
                                                        summation_prv, new_in_1, new_in_2, &
                                                        new_in_3, new_out_1, block_compatible, &
                                                        move_prv
      TYPE(array_list)                               :: blk_sizes_in

      CALL timeset(routineN, handle)

      DBCSR_ASSERT(tensor_out%valid)

      unit_nr_prv = prep_output_unit(unit_nr)

      IF (PRESENT(move_data)) THEN
         move_prv = move_data
      ELSE
         move_prv = .FALSE.
      END IF

      dist_compatible_tas = .FALSE.
      dist_compatible_tensor = .FALSE.
      block_compatible = .FALSE.
      new_in_1 = .FALSE.
      new_in_2 = .FALSE.
      new_in_3 = .FALSE.
      new_out_1 = .FALSE.

      IF (PRESENT(summation)) THEN
         summation_prv = summation
      ELSE
         summation_prv = .FALSE.
      END IF

      IF (PRESENT(bounds)) THEN
         ALLOCATE (in_tmp_1)
         CALL dbcsr_t_crop(tensor_in, in_tmp_1, bounds=bounds, move_data=move_prv)
         new_in_1 = .TRUE.
         move_prv = .TRUE.
      ELSE
         in_tmp_1 => tensor_in
      END IF

      IF (PRESENT(order)) THEN
         CALL reorder_arrays(in_tmp_1%blk_sizes, blk_sizes_in, order=order)
         block_compatible = check_equal(blk_sizes_in, tensor_out%blk_sizes)
      ELSE
         block_compatible = check_equal(in_tmp_1%blk_sizes, tensor_out%blk_sizes)
      END IF

      IF (.NOT. block_compatible) THEN
         ALLOCATE (in_tmp_2, out_tmp_1)
         CALL dbcsr_t_make_compatible_blocks(in_tmp_1, tensor_out, in_tmp_2, out_tmp_1, order=order, &
                                             nodata2=.NOT. summation_prv, move_data=move_prv)
         new_in_2 = .TRUE.; new_out_1 = .TRUE.
         move_prv = .TRUE.
      ELSE
         in_tmp_2 => in_tmp_1
         out_tmp_1 => tensor_out
      END IF

      IF (PRESENT(order)) THEN
         ALLOCATE (in_tmp_3)
         CALL dbcsr_t_permute_index(in_tmp_2, in_tmp_3, order)
         new_in_3 = .TRUE.
      ELSE
         in_tmp_3 => in_tmp_2
      END IF

      ALLOCATE (map1_in_1(ndims_matrix_row(in_tmp_3)))
      ALLOCATE (map1_in_2(ndims_matrix_column(in_tmp_3)))
      CALL dbcsr_t_get_mapping_info(in_tmp_3%nd_index, map1_2d=map1_in_1, map2_2d=map1_in_2)

      ALLOCATE (map2_in_1(ndims_matrix_row(out_tmp_1)))
      ALLOCATE (map2_in_2(ndims_matrix_column(out_tmp_1)))
      CALL dbcsr_t_get_mapping_info(out_tmp_1%nd_index, map1_2d=map2_in_1, map2_2d=map2_in_2)

      IF (.NOT. PRESENT(order)) THEN
         IF (array_eq_i(map1_in_1, map2_in_1) .AND. array_eq_i(map1_in_2, map2_in_2)) THEN
            dist_compatible_tas = check_equal(in_tmp_3%nd_dist, out_tmp_1%nd_dist)
         ELSEIF (array_eq_i([map1_in_1, map1_in_2], [map2_in_1, map2_in_2])) THEN
            dist_compatible_tensor = check_equal(in_tmp_3%nd_dist, out_tmp_1%nd_dist)
         END IF
      END IF

      IF (dist_compatible_tas) THEN
         CALL dbcsr_tas_copy(out_tmp_1%matrix_rep, in_tmp_3%matrix_rep, summation)
         IF (move_prv) CALL dbcsr_t_clear(in_tmp_3)
      ELSEIF (dist_compatible_tensor) THEN
         CALL dbcsr_t_copy_nocomm(in_tmp_3, out_tmp_1, summation)
         IF (move_prv) CALL dbcsr_t_clear(in_tmp_3)
      ELSE
         CALL dbcsr_t_reshape(in_tmp_3, out_tmp_1, summation, move_data=move_prv)
      END IF

      IF (new_in_1) THEN
         CALL dbcsr_t_destroy(in_tmp_1)
         DEALLOCATE (in_tmp_1)
      END IF

      IF (new_in_2) THEN
         CALL dbcsr_t_destroy(in_tmp_2)
         DEALLOCATE (in_tmp_2)
      END IF

      IF (new_in_3) THEN
         CALL dbcsr_t_destroy(in_tmp_3)
         DEALLOCATE (in_tmp_3)
      END IF

      IF (new_out_1) THEN
         IF (unit_nr_prv /= 0) THEN
            CALL dbcsr_t_write_tensor_dist(out_tmp_1, unit_nr)
         END IF
         CALL dbcsr_t_split_copyback(out_tmp_1, tensor_out, summation)
         CALL dbcsr_t_destroy(out_tmp_1)
         DEALLOCATE (out_tmp_1)
      END IF

      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_copy_nocomm(tensor_in, tensor_out, summation)
      !! copy without communication, requires that both tensors have same process grid and distribution

      TYPE(dbcsr_t_type), INTENT(INOUT) :: tensor_in
      TYPE(dbcsr_t_type), INTENT(INOUT) :: tensor_out
      LOGICAL, INTENT(IN), OPTIONAL                      :: summation
         !! Whether to sum matrices b = a + b
      TYPE(dbcsr_t_iterator_type) :: iter
      INTEGER, DIMENSION(ndims_tensor(tensor_in))  :: ind_nd
      INTEGER :: blk
      TYPE(block_nd) :: blk_data
      LOGICAL :: found

      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_copy_nocomm'
      INTEGER :: handle

      CALL timeset(routineN, handle)
      DBCSR_ASSERT(tensor_out%valid)

      IF (PRESENT(summation)) THEN
         IF (.NOT. summation) CALL dbcsr_t_clear(tensor_out)
      ELSE
         CALL dbcsr_t_clear(tensor_out)
      END IF

      CALL dbcsr_t_reserve_blocks(tensor_in, tensor_out)

      CALL dbcsr_t_iterator_start(iter, tensor_in)
      DO WHILE (dbcsr_t_iterator_blocks_left(iter))
         CALL dbcsr_t_iterator_next_block(iter, ind_nd, blk)
         CALL dbcsr_t_get_block(tensor_in, ind_nd, blk_data, found)
         DBCSR_ASSERT(found)
         CALL dbcsr_t_put_block(tensor_out, ind_nd, blk_data, summation=summation)
         CALL destroy_block(blk_data)
      END DO
      CALL dbcsr_t_iterator_stop(iter)

      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_copy_matrix_to_tensor(matrix_in, tensor_out, summation)
      !! copy matrix to tensor.

      TYPE(dbcsr_type), TARGET, INTENT(IN)               :: matrix_in
      TYPE(dbcsr_t_type), INTENT(INOUT)                  :: tensor_out
      LOGICAL, INTENT(IN), OPTIONAL                      :: summation
         !! tensor_out = tensor_out + matrix_in
      TYPE(dbcsr_type), POINTER                          :: matrix_in_desym

      INTEGER, DIMENSION(2)                              :: ind_2d
      REAL(KIND=real_8), ALLOCATABLE, DIMENSION(:, :)    :: block_arr
      REAL(KIND=real_8), DIMENSION(:, :), POINTER        :: block
      TYPE(dbcsr_iterator_type)                          :: iter
      LOGICAL                                            :: tr

      INTEGER                                            :: handle
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_copy_matrix_to_tensor'

      CALL timeset(routineN, handle)
      DBCSR_ASSERT(tensor_out%valid)

      NULLIFY (block)

      IF (dbcsr_has_symmetry(matrix_in)) THEN
         ALLOCATE (matrix_in_desym)
         CALL dbcsr_desymmetrize(matrix_in, matrix_in_desym)
      ELSE
         matrix_in_desym => matrix_in
      END IF

      IF (PRESENT(summation)) THEN
         IF (.NOT. summation) CALL dbcsr_t_clear(tensor_out)
      ELSE
         CALL dbcsr_t_clear(tensor_out)
      END IF

      CALL dbcsr_t_reserve_blocks(matrix_in_desym, tensor_out)

      CALL dbcsr_iterator_start(iter, matrix_in_desym)
      DO WHILE (dbcsr_iterator_blocks_left(iter))
         CALL dbcsr_iterator_next_block(iter, ind_2d(1), ind_2d(2), block, tr)
         CALL allocate_any(block_arr, source=block)
         CALL dbcsr_t_put_block(tensor_out, ind_2d, SHAPE(block_arr), block_arr, summation=summation)
         DEALLOCATE (block_arr)
      END DO
      CALL dbcsr_iterator_stop(iter)

      IF (dbcsr_has_symmetry(matrix_in)) THEN
         CALL dbcsr_release(matrix_in_desym)
         DEALLOCATE (matrix_in_desym)
      END IF

      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_copy_tensor_to_matrix(tensor_in, matrix_out, summation)
      !! copy tensor to matrix

      TYPE(dbcsr_t_type), INTENT(INOUT)      :: tensor_in
      TYPE(dbcsr_type), INTENT(INOUT)        :: matrix_out
      LOGICAL, INTENT(IN), OPTIONAL          :: summation
         !! matrix_out = matrix_out + tensor_in
      TYPE(dbcsr_t_iterator_type)            :: iter
      INTEGER                                :: blk, handle
      INTEGER, DIMENSION(2)                  :: ind_2d
      REAL(KIND=real_8), DIMENSION(:, :), ALLOCATABLE :: block
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_copy_tensor_to_matrix'
      LOGICAL :: found

      CALL timeset(routineN, handle)

      IF (PRESENT(summation)) THEN
         IF (.NOT. summation) CALL dbcsr_clear(matrix_out)
      ELSE
         CALL dbcsr_clear(matrix_out)
      END IF

      CALL dbcsr_t_reserve_blocks(tensor_in, matrix_out)

      CALL dbcsr_t_iterator_start(iter, tensor_in)
      DO WHILE (dbcsr_t_iterator_blocks_left(iter))
         CALL dbcsr_t_iterator_next_block(iter, ind_2d, blk)
         IF (dbcsr_has_symmetry(matrix_out) .AND. checker_tr(ind_2d(1), ind_2d(2))) CYCLE

         CALL dbcsr_t_get_block(tensor_in, ind_2d, block, found)
         DBCSR_ASSERT(found)

         IF (dbcsr_has_symmetry(matrix_out) .AND. ind_2d(1) > ind_2d(2)) THEN
            CALL dbcsr_put_block(matrix_out, ind_2d(2), ind_2d(1), TRANSPOSE(block), summation=summation)
         ELSE
            CALL dbcsr_put_block(matrix_out, ind_2d(1), ind_2d(2), block, summation=summation)
         END IF
         DEALLOCATE (block)
      END DO
      CALL dbcsr_t_iterator_stop(iter)

      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_contract(alpha, tensor_1, tensor_2, beta, tensor_3, &
                               contract_1, notcontract_1, &
                               contract_2, notcontract_2, &
                               map_1, map_2, &
                               bounds_1, bounds_2, bounds_3, &
                               optimize_dist, pgrid_opt_1, pgrid_opt_2, pgrid_opt_3, &
                               filter_eps, flop, move_data, retain_sparsity, unit_nr, log_verbose)
      !! Contract tensors by multiplying matrix representations.
      !! tensor_3(map_1, map_2) := alpha * tensor_1(notcontract_1, contract_1)
      !! * tensor_2(contract_2, notcontract_2)
      !! + beta * tensor_3(map_1, map_2)
      !!
      !! @note
      !! note 1: block sizes of the corresponding indices need to be the same in all tensors.
      !!
      !! note 2: for best performance the tensors should have been created in matrix layouts
      !! compatible with the contraction, e.g. tensor_1 should have been created with either
      !! map1_2d == contract_1 and map2_2d == notcontract_1 or map1_2d == notcontract_1 and
      !! map2_2d == contract_1 (the same with tensor_2 and contract_2 / notcontract_2 and with
      !! tensor_3 and map_1 / map_2).
      !! Furthermore the two largest tensors involved in the contraction should map both to either
      !! tall or short matrices: the largest matrix dimension should be "on the same side"
      !! and should have identical distribution (which is always the case if the distributions were
      !! obtained with dbcsr_t_default_distvec).
      !!
      !! note 3: if the same tensor occurs in multiple contractions, a different tensor object should
      !! be created for each contraction and the data should be copied between the tensors by use of
      !! dbcsr_t_copy. If the same tensor object is used in multiple contractions, matrix layouts are
      !! not compatible for all contractions (see note 2).
      !!
      !! note 4: automatic optimizations are enabled by using the feature of batched contraction, see
      !! dbcsr_t_batched_contract_init, dbcsr_t_batched_contract_finalize. The arguments bounds_1,
      !! bounds_2, bounds_3 give the index ranges of the batches.
      !! @endnote

      TYPE(dbcsr_scalar_type), INTENT(IN)            :: alpha
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_1
         !! first tensor (in)
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_2
         !! second tensor (in)
      TYPE(dbcsr_scalar_type), INTENT(IN)            :: beta
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_1
         !! indices of tensor_1 to contract
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_2
         !! indices of tensor_2 to contract (1:1 with contract_1)
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_1
         !! which indices of tensor_3 map to non-contracted indices of tensor_1 (1:1 with notcontract_1)
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_2
         !! which indices of tensor_3 map to non-contracted indices of tensor_2 (1:1 with notcontract_2)
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_1
         !! indices of tensor_1 not to contract
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_2
         !! indices of tensor_2 not to contract
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_3
         !! contracted tensor (out)
      INTEGER, DIMENSION(2, SIZE(contract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_1
         !! bounds corresponding to contract_1 AKA contract_2: start and end index of an index range over
         !! which to contract. For use in batched contraction.
      INTEGER, DIMENSION(2, SIZE(notcontract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_2
         !! bounds corresponding to notcontract_1: start and end index of an index range.
         !! For use in batched contraction.
      INTEGER, DIMENSION(2, SIZE(notcontract_2)), &
         INTENT(IN), OPTIONAL                        :: bounds_3
         !! bounds corresponding to notcontract_2: start and end index of an index range.
         !! For use in batched contraction.
      LOGICAL, INTENT(IN), OPTIONAL                  :: optimize_dist
         !! Whether distribution should be optimized internally. In the current implementation this guarantees optimal parameters
         !! only for dense matrices.
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_1
         !! Optionally return optimal process grid for tensor_1. This can be used to choose optimal process grids for subsequent
         !! tensor contractions with tensors of similar shape and sparsity. Under some conditions, pgrid_opt_1 can not be returned,
         !! in this case the pointer is not associated.
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_2
         !! Optionally return optimal process grid for tensor_2.
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_3
         !! Optionally return optimal process grid for tensor_3.
      REAL(KIND=real_8), INTENT(IN), OPTIONAL        :: filter_eps
         !! As in DBCSR mm
      INTEGER(KIND=int_8), INTENT(OUT), OPTIONAL     :: flop
         !! As in DBCSR mm
      LOGICAL, INTENT(IN), OPTIONAL                  :: move_data
         !! memory optimization: transfer data such that tensor_1 and tensor_2 are empty on return
      LOGICAL, INTENT(IN), OPTIONAL                  :: retain_sparsity
         !! enforce the sparsity pattern of the existing tensor_3; default is no
      INTEGER, OPTIONAL, INTENT(IN)                  :: unit_nr
         !! output unit for logging
         !! set it to -1 on ranks that should not write (and any valid unit number on ranks that should write output)
         !! if 0 on ALL ranks, no output is written
      LOGICAL, INTENT(IN), OPTIONAL                  :: log_verbose
         !! verbose logging (for testing only)

      INTEGER                     :: handle

      CALL mp_sync(tensor_1%pgrid%mp_comm_2d)
      CALL timeset("dbcsr_t_total", handle)
      CALL dbcsr_t_contract_expert(alpha, tensor_1, tensor_2, beta, tensor_3, &
                                   contract_1, notcontract_1, &
                                   contract_2, notcontract_2, &
                                   map_1, map_2, &
                                   bounds_1=bounds_1, &
                                   bounds_2=bounds_2, &
                                   bounds_3=bounds_3, &
                                   optimize_dist=optimize_dist, &
                                   pgrid_opt_1=pgrid_opt_1, &
                                   pgrid_opt_2=pgrid_opt_2, &
                                   pgrid_opt_3=pgrid_opt_3, &
                                   filter_eps=filter_eps, &
                                   flop=flop, &
                                   move_data=move_data, &
                                   retain_sparsity=retain_sparsity, &
                                   unit_nr=unit_nr, &
                                   log_verbose=log_verbose)
      CALL mp_sync(tensor_1%pgrid%mp_comm_2d)
      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_contract_expert(alpha, tensor_1, tensor_2, beta, tensor_3, &
                                      contract_1, notcontract_1, &
                                      contract_2, notcontract_2, &
                                      map_1, map_2, &
                                      bounds_1, bounds_2, bounds_3, &
                                      optimize_dist, pgrid_opt_1, pgrid_opt_2, pgrid_opt_3, &
                                      filter_eps, flop, move_data, retain_sparsity, &
                                      nblks_local, result_index, unit_nr, log_verbose)
      !! expert routine for tensor contraction. For internal use only.
      TYPE(dbcsr_scalar_type), INTENT(IN)            :: alpha
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_1
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_2
      TYPE(dbcsr_scalar_type), INTENT(IN)            :: beta
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_2
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_2
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_2
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_3
      INTEGER, DIMENSION(2, SIZE(contract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_1
      INTEGER, DIMENSION(2, SIZE(notcontract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_2
      INTEGER, DIMENSION(2, SIZE(notcontract_2)), &
         INTENT(IN), OPTIONAL                        :: bounds_3
      LOGICAL, INTENT(IN), OPTIONAL                  :: optimize_dist
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_1
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_2
      TYPE(dbcsr_t_pgrid_type), INTENT(OUT), &
         POINTER, OPTIONAL                           :: pgrid_opt_3
      REAL(KIND=real_8), INTENT(IN), OPTIONAL        :: filter_eps
      INTEGER(KIND=int_8), INTENT(OUT), OPTIONAL     :: flop
      LOGICAL, INTENT(IN), OPTIONAL                  :: move_data
      LOGICAL, INTENT(IN), OPTIONAL                  :: retain_sparsity
      INTEGER, INTENT(OUT), OPTIONAL                 :: nblks_local
         !! number of local blocks on this MPI rank
      INTEGER, DIMENSION(dbcsr_t_max_nblks_local(tensor_3), ndims_tensor(tensor_3)), &
         OPTIONAL, INTENT(OUT)                       :: result_index
         !! get indices of non-zero tensor blocks for tensor_3 without actually performing contraction
         !! this is an estimate based on block norm multiplication
      INTEGER, OPTIONAL, INTENT(IN)                  :: unit_nr
      LOGICAL, INTENT(IN), OPTIONAL                  :: log_verbose

      TYPE(dbcsr_t_type), POINTER                    :: tensor_contr_1, tensor_contr_2, tensor_contr_3
      TYPE(dbcsr_t_type), TARGET                     :: tensor_algn_1, tensor_algn_2, tensor_algn_3
      TYPE(dbcsr_t_type), POINTER                    :: tensor_crop_1, tensor_crop_2
      TYPE(dbcsr_t_type), POINTER                    :: tensor_small, tensor_large

      INTEGER(int_8), DIMENSION(:, :), ALLOCATABLE  :: result_index_2d
      LOGICAL                                        :: assert_stmt, tensors_remapped
      INTEGER                                        :: data_type, max_mm_dim, max_tensor, &
                                                        iblk, nblk, unit_nr_prv, ref_tensor, &
                                                        handle
      INTEGER, DIMENSION(SIZE(contract_1))           :: contract_1_mod
      INTEGER, DIMENSION(SIZE(notcontract_1))        :: notcontract_1_mod
      INTEGER, DIMENSION(SIZE(contract_2))           :: contract_2_mod
      INTEGER, DIMENSION(SIZE(notcontract_2))        :: notcontract_2_mod
      INTEGER, DIMENSION(SIZE(map_1))                :: map_1_mod
      INTEGER, DIMENSION(SIZE(map_2))                :: map_2_mod
      CHARACTER(LEN=1)                               :: trans_1, trans_2, trans_3
      LOGICAL                                        :: new_1, new_2, new_3, move_data_1, move_data_2
      INTEGER                                        :: ndims1, ndims2, ndims3
      INTEGER                                        :: occ_1, occ_2
      INTEGER, DIMENSION(:), ALLOCATABLE             :: dims1, dims2, dims3

      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_contract'
      CHARACTER(LEN=1), DIMENSION(:), ALLOCATABLE    :: indchar1, indchar2, indchar3, indchar1_mod, &
                                                        indchar2_mod, indchar3_mod
      CHARACTER(LEN=1), DIMENSION(15) :: alph = &
                                         ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o']
      INTEGER, DIMENSION(2, ndims_tensor(tensor_1)) :: bounds_t1
      INTEGER, DIMENSION(2, ndims_tensor(tensor_2)) :: bounds_t2
      LOGICAL                                        :: do_crop_1, do_crop_2, do_write_3, nodata_3, do_batched, pgrid_changed, &
                                                        pgrid_changed_any, do_change_pgrid(2)
      TYPE(dbcsr_tas_split_info)                     :: split_opt, split, split_opt_avg
      INTEGER, DIMENSION(2) :: pdims_2d_opt, pdims_2d, pcoord_2d, pdims_sub, pdims_sub_opt
      LOGICAL, DIMENSION(2) :: periods_2d
      REAL(real_8) :: pdim_ratio, pdim_ratio_opt
      TYPE(mp_comm_type) :: mp_comm, mp_comm_opt

      NULLIFY (tensor_contr_1, tensor_contr_2, tensor_contr_3, tensor_crop_1, tensor_crop_2, &
               tensor_small)

      CALL timeset(routineN, handle)

      DBCSR_ASSERT(tensor_1%valid)
      DBCSR_ASSERT(tensor_2%valid)
      DBCSR_ASSERT(tensor_3%valid)

      assert_stmt = SIZE(contract_1) .EQ. SIZE(contract_2)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = SIZE(map_1) .EQ. SIZE(notcontract_1)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = SIZE(map_2) .EQ. SIZE(notcontract_2)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = SIZE(notcontract_1) + SIZE(contract_1) .EQ. ndims_tensor(tensor_1)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = SIZE(notcontract_2) + SIZE(contract_2) .EQ. ndims_tensor(tensor_2)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = SIZE(map_1) + SIZE(map_2) .EQ. ndims_tensor(tensor_3)
      DBCSR_ASSERT(assert_stmt)

      assert_stmt = dbcsr_t_get_data_type(tensor_1) .EQ. dbcsr_t_get_data_type(tensor_2)
      DBCSR_ASSERT(assert_stmt)

      unit_nr_prv = prep_output_unit(unit_nr)

      IF (PRESENT(flop)) flop = 0
      IF (PRESENT(result_index)) result_index = 0
      IF (PRESENT(nblks_local)) nblks_local = 0

      IF (PRESENT(move_data)) THEN
         move_data_1 = move_data
         move_data_2 = move_data
      ELSE
         move_data_1 = .FALSE.
         move_data_2 = .FALSE.
      END IF

      nodata_3 = .TRUE.
      IF (PRESENT(retain_sparsity)) THEN
         IF (retain_sparsity) nodata_3 = .FALSE.
      END IF

      CALL dbcsr_t_map_bounds_to_tensors(tensor_1, tensor_2, &
                                         contract_1, notcontract_1, &
                                         contract_2, notcontract_2, &
                                         bounds_t1, bounds_t2, &
                                         bounds_1=bounds_1, bounds_2=bounds_2, bounds_3=bounds_3, &
                                         do_crop_1=do_crop_1, do_crop_2=do_crop_2)

      IF (do_crop_1) THEN
         ALLOCATE (tensor_crop_1)
         CALL dbcsr_t_crop(tensor_1, tensor_crop_1, bounds_t1, move_data=move_data_1)
         move_data_1 = .TRUE.
      ELSE
         tensor_crop_1 => tensor_1
      END IF

      IF (do_crop_2) THEN
         ALLOCATE (tensor_crop_2)
         CALL dbcsr_t_crop(tensor_2, tensor_crop_2, bounds_t2, move_data=move_data_2)
         move_data_2 = .TRUE.
      ELSE
         tensor_crop_2 => tensor_2
      END IF

      ! shortcut for empty tensors
      ! this is needed to avoid unnecessary work in case user contracts different portions of a
      ! tensor consecutively to save memory
      mp_comm = tensor_crop_1%pgrid%mp_comm_2d
      occ_1 = dbcsr_t_get_num_blocks(tensor_crop_1)
      CALL mp_max(occ_1, mp_comm)
      occ_2 = dbcsr_t_get_num_blocks(tensor_crop_2)
      CALL mp_max(occ_2, mp_comm)

      IF (occ_1 == 0 .OR. occ_2 == 0) THEN
         CALL dbcsr_t_scale(tensor_3, beta)
         IF (do_crop_1) THEN
            CALL dbcsr_t_destroy(tensor_crop_1)
            DEALLOCATE (tensor_crop_1)
         END IF
         IF (do_crop_2) THEN
            CALL dbcsr_t_destroy(tensor_crop_2)
            DEALLOCATE (tensor_crop_2)
         END IF

         CALL timestop(handle)
         RETURN
      END IF

      IF (unit_nr_prv /= 0) THEN
         IF (unit_nr_prv > 0) THEN
            WRITE (unit_nr_prv, '(A)') repeat("-", 80)
            WRITE (unit_nr_prv, '(A,1X,A,1X,A,1X,A,1X,A,1X,A)') "DBCSR TENSOR CONTRACTION:", &
               TRIM(tensor_crop_1%name), 'x', TRIM(tensor_crop_2%name), '=', TRIM(tensor_3%name)
            WRITE (unit_nr_prv, '(A)') repeat("-", 80)
         END IF
         CALL dbcsr_t_write_tensor_info(tensor_crop_1, unit_nr_prv, full_info=log_verbose)
         CALL dbcsr_t_write_tensor_dist(tensor_crop_1, unit_nr_prv)
         CALL dbcsr_t_write_tensor_info(tensor_crop_2, unit_nr_prv, full_info=log_verbose)
         CALL dbcsr_t_write_tensor_dist(tensor_crop_2, unit_nr_prv)
      END IF

      data_type = dbcsr_t_get_data_type(tensor_crop_1)

      ! align tensor index with data, tensor data is not modified
      ndims1 = ndims_tensor(tensor_crop_1)
      ndims2 = ndims_tensor(tensor_crop_2)
      ndims3 = ndims_tensor(tensor_3)
      ALLOCATE (indchar1(ndims1), indchar1_mod(ndims1))
      ALLOCATE (indchar2(ndims2), indchar2_mod(ndims2))
      ALLOCATE (indchar3(ndims3), indchar3_mod(ndims3))

      ! labeling tensor index with letters

      indchar1([notcontract_1, contract_1]) = alph(1:ndims1) ! arb. choice
      indchar2(notcontract_2) = alph(ndims1 + 1:ndims1 + SIZE(notcontract_2)) ! arb. choice
      indchar2(contract_2) = indchar1(contract_1)
      indchar3(map_1) = indchar1(notcontract_1)
      indchar3(map_2) = indchar2(notcontract_2)

      IF (unit_nr_prv /= 0) CALL dbcsr_t_print_contraction_index(tensor_crop_1, indchar1, &
                                                                 tensor_crop_2, indchar2, &
                                                                 tensor_3, indchar3, unit_nr_prv)
      IF (unit_nr_prv > 0) THEN
         WRITE (unit_nr_prv, '(T2,A)') "aligning tensor index with data"
      END IF

      CALL align_tensor(tensor_crop_1, contract_1, notcontract_1, &
                        tensor_algn_1, contract_1_mod, notcontract_1_mod, indchar1, indchar1_mod)

      CALL align_tensor(tensor_crop_2, contract_2, notcontract_2, &
                        tensor_algn_2, contract_2_mod, notcontract_2_mod, indchar2, indchar2_mod)

      CALL align_tensor(tensor_3, map_1, map_2, &
                        tensor_algn_3, map_1_mod, map_2_mod, indchar3, indchar3_mod)

      IF (unit_nr_prv /= 0) CALL dbcsr_t_print_contraction_index(tensor_algn_1, indchar1_mod, &
                                                                 tensor_algn_2, indchar2_mod, &
                                                                 tensor_algn_3, indchar3_mod, unit_nr_prv)

      ALLOCATE (dims1(ndims1))
      ALLOCATE (dims2(ndims2))
      ALLOCATE (dims3(ndims3))

      ! ideally we should consider block sizes and occupancy to measure tensor sizes but current solution should work for most
      ! cases and is more elegant. Note that we can not easily consider occupancy since it is unknown for result tensor
      CALL blk_dims_tensor(tensor_crop_1, dims1)
      CALL blk_dims_tensor(tensor_crop_2, dims2)
      CALL blk_dims_tensor(tensor_3, dims3)

      max_mm_dim = MAXLOC([PRODUCT(INT(dims1(notcontract_1), int_8)), &
                           PRODUCT(INT(dims1(contract_1), int_8)), &
                           PRODUCT(INT(dims2(notcontract_2), int_8))], DIM=1)
      max_tensor = MAXLOC([PRODUCT(INT(dims1, int_8)), PRODUCT(INT(dims2, int_8)), PRODUCT(INT(dims3, int_8))], DIM=1)
      SELECT CASE (max_mm_dim)
      CASE (1)
         IF (unit_nr_prv > 0) THEN
            WRITE (unit_nr_prv, '(T2,A)') "large tensors: 1, 3; small tensor: 2"
            WRITE (unit_nr_prv, '(T2,A)') "sorting contraction indices"
         END IF
         CALL index_linked_sort(contract_1_mod, contract_2_mod)
         CALL index_linked_sort(map_2_mod, notcontract_2_mod)
         SELECT CASE (max_tensor)
         CASE (1)
            CALL index_linked_sort(notcontract_1_mod, map_1_mod)
         CASE (3)
            CALL index_linked_sort(map_1_mod, notcontract_1_mod)
         CASE DEFAULT
            DBCSR_ABORT("should not happen")
         END SELECT

         CALL reshape_mm_compatible(tensor_algn_1, tensor_algn_3, tensor_contr_1, tensor_contr_3, &
                                    contract_1_mod, notcontract_1_mod, map_2_mod, map_1_mod, &
                                    trans_1, trans_3, new_1, new_3, ref_tensor, nodata2=nodata_3, optimize_dist=optimize_dist, &
                                    move_data_1=move_data_1, unit_nr=unit_nr_prv)

         CALL reshape_mm_small(tensor_algn_2, contract_2_mod, notcontract_2_mod, tensor_contr_2, trans_2, &
                               new_2, move_data=move_data_2, unit_nr=unit_nr_prv)

         SELECT CASE (ref_tensor)
         CASE (1)
            tensor_large => tensor_contr_1
         CASE (2)
            tensor_large => tensor_contr_3
         END SELECT
         tensor_small => tensor_contr_2

      CASE (2)
         IF (unit_nr_prv > 0) THEN
            WRITE (unit_nr_prv, '(T2,A)') "large tensors: 1, 2; small tensor: 3"
            WRITE (unit_nr_prv, '(T2,A)') "sorting contraction indices"
         END IF

         CALL index_linked_sort(notcontract_1_mod, map_1_mod)
         CALL index_linked_sort(notcontract_2_mod, map_2_mod)
         SELECT CASE (max_tensor)
         CASE (1)
            CALL index_linked_sort(contract_1_mod, contract_2_mod)
         CASE (2)
            CALL index_linked_sort(contract_2_mod, contract_1_mod)
         CASE DEFAULT
            DBCSR_ABORT("should not happen")
         END SELECT

         CALL reshape_mm_compatible(tensor_algn_1, tensor_algn_2, tensor_contr_1, tensor_contr_2, &
                                    notcontract_1_mod, contract_1_mod, notcontract_2_mod, contract_2_mod, &
                                    trans_1, trans_2, new_1, new_2, ref_tensor, optimize_dist=optimize_dist, &
                                    move_data_1=move_data_1, move_data_2=move_data_2, unit_nr=unit_nr_prv)
         CALL invert_transpose_flag(trans_1)

         CALL reshape_mm_small(tensor_algn_3, map_1_mod, map_2_mod, tensor_contr_3, trans_3, &
                               new_3, nodata=nodata_3, unit_nr=unit_nr_prv)

         SELECT CASE (ref_tensor)
         CASE (1)
            tensor_large => tensor_contr_1
         CASE (2)
            tensor_large => tensor_contr_2
         END SELECT
         tensor_small => tensor_contr_3

      CASE (3)
         IF (unit_nr_prv > 0) THEN
            WRITE (unit_nr_prv, '(T2,A)') "large tensors: 2, 3; small tensor: 1"
            WRITE (unit_nr_prv, '(T2,A)') "sorting contraction indices"
         END IF
         CALL index_linked_sort(map_1_mod, notcontract_1_mod)
         CALL index_linked_sort(contract_2_mod, contract_1_mod)
         SELECT CASE (max_tensor)
         CASE (2)
            CALL index_linked_sort(notcontract_2_mod, map_2_mod)
         CASE (3)
            CALL index_linked_sort(map_2_mod, notcontract_2_mod)
         CASE DEFAULT
            DBCSR_ABORT("should not happen")
         END SELECT

         CALL reshape_mm_compatible(tensor_algn_2, tensor_algn_3, tensor_contr_2, tensor_contr_3, &
                                    contract_2_mod, notcontract_2_mod, map_1_mod, map_2_mod, &
                                    trans_2, trans_3, new_2, new_3, ref_tensor, nodata2=nodata_3, optimize_dist=optimize_dist, &
                                    move_data_1=move_data_2, unit_nr=unit_nr_prv)

         CALL invert_transpose_flag(trans_2)
         CALL invert_transpose_flag(trans_3)

         CALL reshape_mm_small(tensor_algn_1, notcontract_1_mod, contract_1_mod, tensor_contr_1, &
                               trans_1, new_1, move_data=move_data_1, unit_nr=unit_nr_prv)

         SELECT CASE (ref_tensor)
         CASE (1)
            tensor_large => tensor_contr_2
         CASE (2)
            tensor_large => tensor_contr_3
         END SELECT
         tensor_small => tensor_contr_1

      END SELECT

      IF (unit_nr_prv /= 0) CALL dbcsr_t_print_contraction_index(tensor_contr_1, indchar1_mod, &
                                                                 tensor_contr_2, indchar2_mod, &
                                                                 tensor_contr_3, indchar3_mod, unit_nr_prv)
      IF (unit_nr_prv /= 0) THEN
         IF (new_1) CALL dbcsr_t_write_tensor_info(tensor_contr_1, unit_nr_prv, full_info=log_verbose)
         IF (new_1) CALL dbcsr_t_write_tensor_dist(tensor_contr_1, unit_nr_prv)
         IF (new_2) CALL dbcsr_t_write_tensor_info(tensor_contr_2, unit_nr_prv, full_info=log_verbose)
         IF (new_2) CALL dbcsr_t_write_tensor_dist(tensor_contr_2, unit_nr_prv)
      END IF

      IF (.NOT. PRESENT(result_index)) THEN
         CALL dbcsr_tas_multiply(trans_1, trans_2, trans_3, alpha, &
                                 tensor_contr_1%matrix_rep, tensor_contr_2%matrix_rep, &
                                 beta, &
                                 tensor_contr_3%matrix_rep, filter_eps=filter_eps, flop=flop, &
                                 unit_nr=unit_nr_prv, log_verbose=log_verbose, &
                                 split_opt=split_opt, &
                                 move_data_a=move_data_1, move_data_b=move_data_2, retain_sparsity=retain_sparsity)
      ELSE

         CALL dbcsr_tas_result_index(trans_1, trans_2, trans_3, tensor_contr_1%matrix_rep, tensor_contr_2%matrix_rep, &
                                     tensor_contr_3%matrix_rep, filter_eps=filter_eps, blk_ind=result_index_2d)

         nblk = SIZE(result_index_2d, 1)
         IF (PRESENT(nblks_local)) nblks_local = nblk
         IF (SIZE(result_index, 1) < nblk) THEN
            CALL dbcsr_abort(__LOCATION__, &
        "allocated size of `result_index` is too small. This error occurs due to a high load imbalance of distributed tensor data.")
         END IF

         DO iblk = 1, nblk
            result_index(iblk, :) = get_nd_indices_tensor(tensor_contr_3%nd_index_blk, result_index_2d(iblk, :))
         END DO

         IF (new_1) THEN
            CALL dbcsr_t_destroy(tensor_contr_1)
            DEALLOCATE (tensor_contr_1)
         END IF
         IF (new_2) THEN
            CALL dbcsr_t_destroy(tensor_contr_2)
            DEALLOCATE (tensor_contr_2)
         END IF
         IF (new_3) THEN
            CALL dbcsr_t_destroy(tensor_contr_3)
            DEALLOCATE (tensor_contr_3)
         END IF
         IF (do_crop_1) THEN
            CALL dbcsr_t_destroy(tensor_crop_1)
            DEALLOCATE (tensor_crop_1)
         END IF
         IF (do_crop_2) THEN
            CALL dbcsr_t_destroy(tensor_crop_2)
            DEALLOCATE (tensor_crop_2)
         END IF

         CALL dbcsr_t_destroy(tensor_algn_1)
         CALL dbcsr_t_destroy(tensor_algn_2)
         CALL dbcsr_t_destroy(tensor_algn_3)

         CALL timestop(handle)
         RETURN
      END IF

      IF (PRESENT(pgrid_opt_1)) THEN
         IF (.NOT. new_1) THEN
            ALLOCATE (pgrid_opt_1)
            pgrid_opt_1 = opt_pgrid(tensor_1, split_opt)
         END IF
      END IF

      IF (PRESENT(pgrid_opt_2)) THEN
         IF (.NOT. new_2) THEN
            ALLOCATE (pgrid_opt_2)
            pgrid_opt_2 = opt_pgrid(tensor_2, split_opt)
         END IF
      END IF

      IF (PRESENT(pgrid_opt_3)) THEN
         IF (.NOT. new_3) THEN
            ALLOCATE (pgrid_opt_3)
            pgrid_opt_3 = opt_pgrid(tensor_3, split_opt)
         END IF
      END IF

      do_batched = tensor_small%matrix_rep%do_batched > 0

      tensors_remapped = .FALSE.
      IF (new_1 .OR. new_2 .OR. new_3) tensors_remapped = .TRUE.

      IF (tensors_remapped .AND. do_batched) THEN
         CALL dbcsr_warn(__LOCATION__, &
                         "Internal process grid optimization disabled because tensors are not in contraction-compatible format")
      END IF

      CALL mp_environ(tensor_large%pgrid%mp_comm_2d, 2, pdims_2d, pcoord_2d, periods_2d)

      ! optimize process grid during batched contraction
      do_change_pgrid(:) = .FALSE.
      IF ((.NOT. tensors_remapped) .AND. do_batched) THEN
         ASSOCIATE (storage => tensor_small%contraction_storage)
            DBCSR_ASSERT(storage%static)
            split = dbcsr_tas_info(tensor_large%matrix_rep)
            do_change_pgrid(:) = &
               update_contraction_storage(storage, split_opt, split)

            IF (ANY(do_change_pgrid)) THEN
               mp_comm_opt = dbcsr_tas_mp_comm(tensor_small%pgrid%mp_comm_2d, split_opt%split_rowcol, NINT(storage%nsplit_avg))
               CALL dbcsr_tas_create_split(split_opt_avg, mp_comm_opt, split_opt%split_rowcol, &
                                           NINT(storage%nsplit_avg), own_comm=.TRUE.)
               CALL mp_environ(split_opt_avg%mp_comm, 2, pdims_2d_opt, pcoord_2d, periods_2d)
            END IF

         END ASSOCIATE

         IF (do_change_pgrid(1) .AND. .NOT. do_change_pgrid(2)) THEN
            ! check if new grid has better subgrid, if not there is no need to change process grid
            CALL mp_environ(split_opt_avg%mp_comm_group, 2, pdims_sub_opt, pcoord_2d, periods_2d)
            CALL mp_environ(split%mp_comm_group, 2, pdims_sub, pcoord_2d, periods_2d)

            pdim_ratio = MAXVAL(REAL(pdims_sub, real_8))/MINVAL(pdims_sub)
            pdim_ratio_opt = MAXVAL(REAL(pdims_sub_opt, real_8))/MINVAL(pdims_sub_opt)
            IF (pdim_ratio/pdim_ratio_opt <= default_pdims_accept_ratio**2) THEN
               do_change_pgrid(1) = .FALSE.
               CALL dbcsr_tas_release_info(split_opt_avg)
            END IF
         END IF
      END IF

      IF (unit_nr_prv /= 0) THEN
         do_write_3 = .TRUE.
         IF (tensor_contr_3%matrix_rep%do_batched > 0) THEN
            IF (tensor_contr_3%matrix_rep%mm_storage%batched_out) do_write_3 = .FALSE.
         END IF
         IF (do_write_3) THEN
            CALL dbcsr_t_write_tensor_info(tensor_contr_3, unit_nr_prv, full_info=log_verbose)
            CALL dbcsr_t_write_tensor_dist(tensor_contr_3, unit_nr_prv)
         END IF
      END IF

      IF (new_3) THEN
         ! need redistribute if we created new tensor for tensor 3
         CALL dbcsr_t_scale(tensor_algn_3, beta)
         CALL dbcsr_t_copy_expert(tensor_contr_3, tensor_algn_3, summation=.TRUE., move_data=.TRUE.)
         IF (PRESENT(filter_eps)) CALL dbcsr_t_filter(tensor_algn_3, filter_eps)
         ! tensor_3 automatically has correct data because tensor_algn_3 contains a matrix
         ! pointer to data of tensor_3
      END IF

      ! transfer contraction storage
      CALL dbcsr_t_copy_contraction_storage(tensor_contr_1, tensor_1)
      CALL dbcsr_t_copy_contraction_storage(tensor_contr_2, tensor_2)
      CALL dbcsr_t_copy_contraction_storage(tensor_contr_3, tensor_3)

      IF (unit_nr_prv /= 0) THEN
         IF (new_3 .AND. do_write_3) CALL dbcsr_t_write_tensor_info(tensor_3, unit_nr_prv, full_info=log_verbose)
         IF (new_3 .AND. do_write_3) CALL dbcsr_t_write_tensor_dist(tensor_3, unit_nr_prv)
      END IF

      CALL dbcsr_t_destroy(tensor_algn_1)
      CALL dbcsr_t_destroy(tensor_algn_2)
      CALL dbcsr_t_destroy(tensor_algn_3)

      IF (do_crop_1) THEN
         CALL dbcsr_t_destroy(tensor_crop_1)
         DEALLOCATE (tensor_crop_1)
      END IF

      IF (do_crop_2) THEN
         CALL dbcsr_t_destroy(tensor_crop_2)
         DEALLOCATE (tensor_crop_2)
      END IF

      IF (new_1) THEN
         CALL dbcsr_t_destroy(tensor_contr_1)
         DEALLOCATE (tensor_contr_1)
      END IF
      IF (new_2) THEN
         CALL dbcsr_t_destroy(tensor_contr_2)
         DEALLOCATE (tensor_contr_2)
      END IF
      IF (new_3) THEN
         CALL dbcsr_t_destroy(tensor_contr_3)
         DEALLOCATE (tensor_contr_3)
      END IF

      IF (PRESENT(move_data)) THEN
         IF (move_data) THEN
            CALL dbcsr_t_clear(tensor_1)
            CALL dbcsr_t_clear(tensor_2)
         END IF
      END IF

      IF (unit_nr_prv > 0) THEN
         WRITE (unit_nr_prv, '(A)') repeat("-", 80)
         WRITE (unit_nr_prv, '(A)') "TENSOR CONTRACTION DONE"
         WRITE (unit_nr_prv, '(A)') repeat("-", 80)
      END IF

      IF (ANY(do_change_pgrid)) THEN
         pgrid_changed_any = .FALSE.
         SELECT CASE (max_mm_dim)
         CASE (1)
            IF (ALLOCATED(tensor_1%contraction_storage) .AND. ALLOCATED(tensor_3%contraction_storage)) THEN
               CALL dbcsr_t_change_pgrid_2d(tensor_1, tensor_1%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
               CALL dbcsr_t_change_pgrid_2d(tensor_3, tensor_3%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
            END IF
            IF (pgrid_changed_any) THEN
               IF (tensor_2%matrix_rep%do_batched == 3) THEN
                  ! set flag that process grid has been optimized to make sure that no grid optimizations are done
                  ! in TAS multiply algorithm
                  CALL dbcsr_tas_batched_mm_complete(tensor_2%matrix_rep)
               END IF
            END IF
         CASE (2)
            IF (ALLOCATED(tensor_1%contraction_storage) .AND. ALLOCATED(tensor_2%contraction_storage)) THEN
               CALL dbcsr_t_change_pgrid_2d(tensor_1, tensor_1%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
               CALL dbcsr_t_change_pgrid_2d(tensor_2, tensor_2%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
            END IF
            IF (pgrid_changed_any) THEN
               IF (tensor_3%matrix_rep%do_batched == 3) THEN
                  CALL dbcsr_tas_batched_mm_complete(tensor_3%matrix_rep)
               END IF
            END IF
         CASE (3)
            IF (ALLOCATED(tensor_2%contraction_storage) .AND. ALLOCATED(tensor_3%contraction_storage)) THEN
               CALL dbcsr_t_change_pgrid_2d(tensor_2, tensor_2%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
               CALL dbcsr_t_change_pgrid_2d(tensor_3, tensor_3%pgrid%mp_comm_2d, pdims=pdims_2d_opt, &
                                            nsplit=split_opt_avg%ngroup, dimsplit=split_opt_avg%split_rowcol, &
                                            pgrid_changed=pgrid_changed, &
                                            unit_nr=unit_nr_prv)
               IF (pgrid_changed) pgrid_changed_any = .TRUE.
            END IF
            IF (pgrid_changed_any) THEN
               IF (tensor_1%matrix_rep%do_batched == 3) THEN
                  CALL dbcsr_tas_batched_mm_complete(tensor_1%matrix_rep)
               END IF
            END IF
         END SELECT
         CALL dbcsr_tas_release_info(split_opt_avg)
      END IF

      IF ((.NOT. tensors_remapped) .AND. do_batched) THEN
         ! freeze TAS process grids if tensor grids were optimized
         CALL dbcsr_tas_set_batched_state(tensor_1%matrix_rep, opt_grid=.TRUE.)
         CALL dbcsr_tas_set_batched_state(tensor_2%matrix_rep, opt_grid=.TRUE.)
         CALL dbcsr_tas_set_batched_state(tensor_3%matrix_rep, opt_grid=.TRUE.)
      END IF

      CALL dbcsr_tas_release_info(split_opt)

      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE align_tensor(tensor_in, contract_in, notcontract_in, &
      !! align tensor index with data
                           tensor_out, contract_out, notcontract_out, indp_in, indp_out)
      TYPE(dbcsr_t_type), INTENT(INOUT)               :: tensor_in
      INTEGER, DIMENSION(:), INTENT(IN)            :: contract_in, notcontract_in
      TYPE(dbcsr_t_type), INTENT(OUT)              :: tensor_out
      INTEGER, DIMENSION(SIZE(contract_in)), &
         INTENT(OUT)                               :: contract_out
      INTEGER, DIMENSION(SIZE(notcontract_in)), &
         INTENT(OUT)                               :: notcontract_out
      CHARACTER(LEN=1), DIMENSION(ndims_tensor(tensor_in)), INTENT(IN) :: indp_in
      CHARACTER(LEN=1), DIMENSION(ndims_tensor(tensor_in)), INTENT(OUT) :: indp_out
      INTEGER, DIMENSION(ndims_tensor(tensor_in)) :: align

      CALL dbcsr_t_align_index(tensor_in, tensor_out, order=align)
      contract_out = align(contract_in)
      notcontract_out = align(notcontract_in)
      indp_out(align) = indp_in

   END SUBROUTINE

   SUBROUTINE reshape_mm_compatible(tensor1, tensor2, tensor1_out, tensor2_out, ind1_free, ind1_linked, &
                                    ind2_free, ind2_linked, trans1, trans2, new1, new2, ref_tensor, &
                                    nodata1, nodata2, move_data_1, &
                                    move_data_2, optimize_dist, unit_nr)
      !! Prepare tensor for contraction: redistribute to a 2d format which can be contracted by
      !! matrix multiplication. This routine reshapes the two largest of the three tensors. Redistribution
      !! is avoided if tensors already in a consistent layout.

      TYPE(dbcsr_t_type), TARGET, INTENT(INOUT)   :: tensor1
         !! tensor 1 in
      TYPE(dbcsr_t_type), TARGET, INTENT(INOUT)   :: tensor2
         !! tensor 2 in
      TYPE(dbcsr_t_type), POINTER, INTENT(OUT)    :: tensor1_out, tensor2_out
         !! tensor 1 out
         !! tensor 2 out
      INTEGER, DIMENSION(:), INTENT(IN)           :: ind1_free, ind2_free
         !! indices of tensor 1 that are "free" (not linked to any index of tensor 2)
      INTEGER, DIMENSION(:), INTENT(IN)           :: ind1_linked, ind2_linked
         !! indices of tensor 1 that are linked to indices of tensor 2
         !! 1:1 correspondence with ind1_linked
      CHARACTER(LEN=1), INTENT(OUT)               :: trans1, trans2
         !! transpose flag of matrix rep. of tensor 1
         !! transpose flag of matrix rep. tensor 2
      LOGICAL, INTENT(OUT)                        :: new1, new2
         !! whether a new tensor 1 was created
         !! whether a new tensor 2 was created
      INTEGER, INTENT(OUT) :: ref_tensor
      LOGICAL, INTENT(IN), OPTIONAL               :: nodata1, nodata2
         !! don't copy data of tensor 1
         !! don't copy data of tensor 2
      LOGICAL, INTENT(INOUT), OPTIONAL            :: move_data_1, move_data_2
         !! memory optimization: transfer data s.t. tensor1 may be empty on return
         !! memory optimization: transfer data s.t. tensor2 may be empty on return
      LOGICAL, INTENT(IN), OPTIONAL               :: optimize_dist
         !! experimental: optimize distribution
      INTEGER, INTENT(IN), OPTIONAL               :: unit_nr
         !! output unit
      INTEGER                                     :: compat1, compat1_old, compat2, compat2_old, &
                                                     unit_nr_prv
      TYPE(array_list)                            :: dist_list
      INTEGER, DIMENSION(:), ALLOCATABLE          :: mp_dims
      TYPE(dbcsr_t_distribution_type)             :: dist_in
      INTEGER(KIND=int_8)                         :: nblkrows, nblkcols
      LOGICAL                                     :: optimize_dist_prv
      INTEGER, DIMENSION(ndims_tensor(tensor1)) :: dims1
      INTEGER, DIMENSION(ndims_tensor(tensor2)) :: dims2
      TYPE(mp_comm_type) :: comm_2d

      NULLIFY (tensor1_out, tensor2_out)

      unit_nr_prv = prep_output_unit(unit_nr)

      CALL blk_dims_tensor(tensor1, dims1)
      CALL blk_dims_tensor(tensor2, dims2)

      IF (PRODUCT(int(dims1, int_8)) .GE. PRODUCT(int(dims2, int_8))) THEN
         ref_tensor = 1
      ELSE
         ref_tensor = 2
      END IF

      IF (PRESENT(optimize_dist)) THEN
         optimize_dist_prv = optimize_dist
      ELSE
         optimize_dist_prv = .FALSE.
      END IF

      compat1 = compat_map(tensor1%nd_index, ind1_linked)
      compat2 = compat_map(tensor2%nd_index, ind2_linked)
      compat1_old = compat1
      compat2_old = compat2

      IF (unit_nr_prv > 0) THEN
         WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor1%name), ":"
         SELECT CASE (compat1)
         CASE (0)
            WRITE (unit_nr_prv, '(A)') "Not compatible"
         CASE (1)
            WRITE (unit_nr_prv, '(A)') "Normal"
         CASE (2)
            WRITE (unit_nr_prv, '(A)') "Transposed"
         END SELECT
         WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor2%name), ":"
         SELECT CASE (compat2)
         CASE (0)
            WRITE (unit_nr_prv, '(A)') "Not compatible"
         CASE (1)
            WRITE (unit_nr_prv, '(A)') "Normal"
         CASE (2)
            WRITE (unit_nr_prv, '(A)') "Transposed"
         END SELECT
      END IF

      new1 = .FALSE.
      new2 = .FALSE.

      IF (compat1 == 0 .OR. optimize_dist_prv) THEN
         new1 = .TRUE.
      END IF

      IF (compat2 == 0 .OR. optimize_dist_prv) THEN
         new2 = .TRUE.
      END IF

      IF (ref_tensor == 1) THEN ! tensor 1 is reference and tensor 2 is reshaped compatible with tensor 1
         IF (compat1 == 0 .OR. optimize_dist_prv) THEN ! tensor 1 is not contraction compatible --> reshape
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "Redistribution of", TRIM(tensor1%name)
            nblkrows = PRODUCT(INT(dims1(ind1_linked), KIND=int_8))
            nblkcols = PRODUCT(INT(dims1(ind1_free), KIND=int_8))
            comm_2d = dbcsr_tas_mp_comm(tensor1%pgrid%mp_comm_2d, nblkrows, nblkcols)
            ALLOCATE (tensor1_out)
            CALL dbcsr_t_remap(tensor1, ind1_linked, ind1_free, tensor1_out, comm_2d=comm_2d, &
                               nodata=nodata1, move_data=move_data_1)
            CALL mp_comm_free(comm_2d)
            compat1 = 1
         ELSE
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "No redistribution of", TRIM(tensor1%name)
            tensor1_out => tensor1
         END IF
         IF (compat2 == 0 .OR. optimize_dist_prv) THEN ! tensor 2 is not contraction compatible --> reshape
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A,1X,A,1X,A)') "Redistribution of", &
               TRIM(tensor2%name), "compatible with", TRIM(tensor1%name)
            dist_in = dbcsr_t_distribution(tensor1_out)
            dist_list = array_sublist(dist_in%nd_dist, ind1_linked)
            IF (compat1 == 1) THEN ! linked index is first 2d dimension
               ! get distribution of linked index, tensor 2 must adopt this distribution
               ! get grid dimensions of linked index
               ALLOCATE (mp_dims(ndims_mapping_row(dist_in%pgrid%nd_index_grid)))
               CALL dbcsr_t_get_mapping_info(dist_in%pgrid%nd_index_grid, dims1_2d=mp_dims)
               ALLOCATE (tensor2_out)
               CALL dbcsr_t_remap(tensor2, ind2_linked, ind2_free, tensor2_out, comm_2d=dist_in%pgrid%mp_comm_2d, &
                                  dist1=dist_list, mp_dims_1=mp_dims, nodata=nodata2, move_data=move_data_2)
            ELSEIF (compat1 == 2) THEN ! linked index is second 2d dimension
               ! get distribution of linked index, tensor 2 must adopt this distribution
               ! get grid dimensions of linked index
               ALLOCATE (mp_dims(ndims_mapping_column(dist_in%pgrid%nd_index_grid)))
               CALL dbcsr_t_get_mapping_info(dist_in%pgrid%nd_index_grid, dims2_2d=mp_dims)
               ALLOCATE (tensor2_out)
               CALL dbcsr_t_remap(tensor2, ind2_free, ind2_linked, tensor2_out, comm_2d=dist_in%pgrid%mp_comm_2d, &
                                  dist2=dist_list, mp_dims_2=mp_dims, nodata=nodata2, move_data=move_data_2)
            ELSE
               DBCSR_ABORT("should not happen")
            END IF
            compat2 = compat1
         ELSE
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "No redistribution of", TRIM(tensor2%name)
            tensor2_out => tensor2
         END IF
      ELSE ! tensor 2 is reference and tensor 1 is reshaped compatible with tensor 2
         IF (compat2 == 0 .OR. optimize_dist_prv) THEN ! tensor 2 is not contraction compatible --> reshape
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "Redistribution of", TRIM(tensor2%name)
            nblkrows = PRODUCT(INT(dims2(ind2_linked), KIND=int_8))
            nblkcols = PRODUCT(INT(dims2(ind2_free), KIND=int_8))
            comm_2d = dbcsr_tas_mp_comm(tensor2%pgrid%mp_comm_2d, nblkrows, nblkcols)
            ALLOCATE (tensor2_out)
            CALL dbcsr_t_remap(tensor2, ind2_linked, ind2_free, tensor2_out, nodata=nodata2, move_data=move_data_2)
            CALL mp_comm_free(comm_2d)
            compat2 = 1
         ELSE
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "No redistribution of", TRIM(tensor2%name)
            tensor2_out => tensor2
         END IF
         IF (compat1 == 0 .OR. optimize_dist_prv) THEN ! tensor 1 is not contraction compatible --> reshape
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A,1X,A,1X,A)') "Redistribution of", TRIM(tensor1%name), &
               "compatible with", TRIM(tensor2%name)
            dist_in = dbcsr_t_distribution(tensor2_out)
            dist_list = array_sublist(dist_in%nd_dist, ind2_linked)
            IF (compat2 == 1) THEN
               ALLOCATE (mp_dims(ndims_mapping_row(dist_in%pgrid%nd_index_grid)))
               CALL dbcsr_t_get_mapping_info(dist_in%pgrid%nd_index_grid, dims1_2d=mp_dims)
               ALLOCATE (tensor1_out)
               CALL dbcsr_t_remap(tensor1, ind1_linked, ind1_free, tensor1_out, comm_2d=dist_in%pgrid%mp_comm_2d, &
                                  dist1=dist_list, mp_dims_1=mp_dims, nodata=nodata1, move_data=move_data_1)
            ELSEIF (compat2 == 2) THEN
               ALLOCATE (mp_dims(ndims_mapping_column(dist_in%pgrid%nd_index_grid)))
               CALL dbcsr_t_get_mapping_info(dist_in%pgrid%nd_index_grid, dims2_2d=mp_dims)
               ALLOCATE (tensor1_out)
               CALL dbcsr_t_remap(tensor1, ind1_free, ind1_linked, tensor1_out, comm_2d=dist_in%pgrid%mp_comm_2d, &
                                  dist2=dist_list, mp_dims_2=mp_dims, nodata=nodata1, move_data=move_data_1)
            ELSE
               DBCSR_ABORT("should not happen")
            END IF
            compat1 = compat2
         ELSE
            IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "No redistribution of", TRIM(tensor1%name)
            tensor1_out => tensor1
         END IF
      END IF

      SELECT CASE (compat1)
      CASE (1)
         trans1 = dbcsr_no_transpose
      CASE (2)
         trans1 = dbcsr_transpose
      CASE DEFAULT
         DBCSR_ABORT("should not happen")
      END SELECT

      SELECT CASE (compat2)
      CASE (1)
         trans2 = dbcsr_no_transpose
      CASE (2)
         trans2 = dbcsr_transpose
      CASE DEFAULT
         DBCSR_ABORT("should not happen")
      END SELECT

      IF (unit_nr_prv > 0) THEN
         IF (compat1 .NE. compat1_old) THEN
            WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor1_out%name), ":"
            SELECT CASE (compat1)
            CASE (0)
               WRITE (unit_nr_prv, '(A)') "Not compatible"
            CASE (1)
               WRITE (unit_nr_prv, '(A)') "Normal"
            CASE (2)
               WRITE (unit_nr_prv, '(A)') "Transposed"
            END SELECT
         END IF
         IF (compat2 .NE. compat2_old) THEN
            WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor2_out%name), ":"
            SELECT CASE (compat2)
            CASE (0)
               WRITE (unit_nr_prv, '(A)') "Not compatible"
            CASE (1)
               WRITE (unit_nr_prv, '(A)') "Normal"
            CASE (2)
               WRITE (unit_nr_prv, '(A)') "Transposed"
            END SELECT
         END IF
      END IF

      IF (new1 .AND. PRESENT(move_data_1)) move_data_1 = .TRUE.
      IF (new2 .AND. PRESENT(move_data_2)) move_data_2 = .TRUE.

   END SUBROUTINE

   SUBROUTINE reshape_mm_small(tensor_in, ind1, ind2, tensor_out, trans, new, nodata, move_data, unit_nr)
      !! Prepare tensor for contraction: redistribute to a 2d format which can be contracted by
      !! matrix multiplication. This routine reshapes the smallest of the three tensors.

      TYPE(dbcsr_t_type), TARGET, INTENT(INOUT)   :: tensor_in
         !! tensor in
      INTEGER, DIMENSION(:), INTENT(IN)           :: ind1, ind2
         !! index that should be mapped to first matrix dimension
         !! index that should be mapped to second matrix dimension
      TYPE(dbcsr_t_type), POINTER, INTENT(OUT)    :: tensor_out
         !! tensor out
      CHARACTER(LEN=1), INTENT(OUT)               :: trans
         !! transpose flag of matrix rep.
      LOGICAL, INTENT(OUT)                        :: new
         !! whether a new tensor was created for tensor_out
      LOGICAL, INTENT(IN), OPTIONAL               :: nodata, move_data
         !! don't copy tensor data
         !! memory optimization: transfer data s.t. tensor_in may be empty on return
      INTEGER, INTENT(IN), OPTIONAL               :: unit_nr
         !! output unit
      INTEGER                                     :: compat1, compat2, compat1_old, compat2_old, unit_nr_prv
      LOGICAL                                     :: nodata_prv

      NULLIFY (tensor_out)
      IF (PRESENT(nodata)) THEN
         nodata_prv = nodata
      ELSE
         nodata_prv = .FALSE.
      END IF

      unit_nr_prv = prep_output_unit(unit_nr)

      new = .FALSE.
      compat1 = compat_map(tensor_in%nd_index, ind1)
      compat2 = compat_map(tensor_in%nd_index, ind2)
      compat1_old = compat1; compat2_old = compat2
      IF (unit_nr_prv > 0) THEN
         WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor_in%name), ":"
         IF (compat1 == 1 .AND. compat2 == 2) THEN
            WRITE (unit_nr_prv, '(A)') "Normal"
         ELSEIF (compat1 == 2 .AND. compat2 == 1) THEN
            WRITE (unit_nr_prv, '(A)') "Transposed"
         ELSE
            WRITE (unit_nr_prv, '(A)') "Not compatible"
         END IF
      END IF
      IF (compat1 == 0 .or. compat2 == 0) THEN ! index mapping not compatible with contract index

         IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "Redistribution of", TRIM(tensor_in%name)

         ALLOCATE (tensor_out)
         CALL dbcsr_t_remap(tensor_in, ind1, ind2, tensor_out, nodata=nodata, move_data=move_data)
         CALL dbcsr_t_copy_contraction_storage(tensor_in, tensor_out)
         compat1 = 1
         compat2 = 2
         new = .TRUE.
      ELSE
         IF (unit_nr_prv > 0) WRITE (unit_nr_prv, '(T2,A,1X,A)') "No redistribution of", TRIM(tensor_in%name)
         tensor_out => tensor_in
      END IF

      IF (compat1 == 1 .AND. compat2 == 2) THEN
         trans = dbcsr_no_transpose
      ELSEIF (compat1 == 2 .AND. compat2 == 1) THEN
         trans = dbcsr_transpose
      ELSE
         DBCSR_ABORT("this should not happen")
      END IF

      IF (unit_nr_prv > 0) THEN
         IF (compat1_old .NE. compat1 .OR. compat2_old .NE. compat2) THEN
            WRITE (unit_nr_prv, '(T2,A,1X,A,A,1X)', advance='no') "compatibility of", TRIM(tensor_out%name), ":"
            IF (compat1 == 1 .AND. compat2 == 2) THEN
               WRITE (unit_nr_prv, '(A)') "Normal"
            ELSEIF (compat1 == 2 .AND. compat2 == 1) THEN
               WRITE (unit_nr_prv, '(A)') "Transposed"
            ELSE
               WRITE (unit_nr_prv, '(A)') "Not compatible"
            END IF
         END IF
      END IF

   END SUBROUTINE

   FUNCTION update_contraction_storage(storage, split_opt, split) RESULT(do_change_pgrid)
      !! update contraction storage that keeps track of process grids during a batched contraction
      !! and decide if tensor process grid needs to be optimized
      TYPE(dbcsr_t_contraction_storage), INTENT(INOUT) :: storage
      TYPE(dbcsr_tas_split_info), INTENT(IN)           :: split_opt
         !! optimized TAS process grid
      TYPE(dbcsr_tas_split_info), INTENT(IN)           :: split
         !! current TAS process grid
      INTEGER, DIMENSION(2) :: pdims_opt, coor, pdims, pdims_sub
      LOGICAL, DIMENSION(2) :: periods
      LOGICAL, DIMENSION(2) :: do_change_pgrid
      REAL(kind=real_8) :: change_criterion, pdims_ratio
      INTEGER :: nsplit_opt, nsplit

      DBCSR_ASSERT(ALLOCATED(split_opt%ngroup_opt))
      nsplit_opt = split_opt%ngroup_opt
      nsplit = split%ngroup

      CALL mp_environ(split_opt%mp_comm, 2, pdims_opt, coor, periods)
      CALL mp_environ(split%mp_comm, 2, pdims, coor, periods)

      storage%ibatch = storage%ibatch + 1

      storage%nsplit_avg = (storage%nsplit_avg*REAL(storage%ibatch - 1, real_8) + REAL(nsplit_opt, real_8)) &
                           /REAL(storage%ibatch, real_8)

      SELECT CASE (split_opt%split_rowcol)
      CASE (rowsplit)
         pdims_ratio = REAL(pdims(1), real_8)/pdims(2)
      CASE (colsplit)
         pdims_ratio = REAL(pdims(2), real_8)/pdims(1)
      END SELECT

      do_change_pgrid(:) = .FALSE.

      ! check for process grid dimensions
      CALL mp_environ(split%mp_comm_group, 2, pdims_sub, coor, periods)
      change_criterion = MAXVAL(REAL(pdims_sub, real_8))/MINVAL(pdims_sub)
      IF (change_criterion > default_pdims_accept_ratio**2) do_change_pgrid(1) = .TRUE.

      ! check for split factor
      change_criterion = MAX(REAL(nsplit, real_8)/storage%nsplit_avg, REAL(storage%nsplit_avg, real_8)/nsplit)
      IF (change_criterion > default_nsplit_accept_ratio) do_change_pgrid(2) = .TRUE.

   END FUNCTION

   FUNCTION compat_map(nd_index, compat_ind)
      !! Check if 2d index is compatible with tensor index
      TYPE(nd_to_2d_mapping), INTENT(IN) :: nd_index
      INTEGER, DIMENSION(:), INTENT(IN)  :: compat_ind
      INTEGER, DIMENSION(ndims_mapping_row(nd_index)) :: map1
      INTEGER, DIMENSION(ndims_mapping_column(nd_index)) :: map2
      INTEGER                            :: compat_map

      CALL dbcsr_t_get_mapping_info(nd_index, map1_2d=map1, map2_2d=map2)

      compat_map = 0
      IF (array_eq_i(map1, compat_ind)) THEN
         compat_map = 1
      ELSEIF (array_eq_i(map2, compat_ind)) THEN
         compat_map = 2
      END IF

   END FUNCTION

   SUBROUTINE invert_transpose_flag(trans_flag)
      CHARACTER(LEN=1), INTENT(INOUT)                    :: trans_flag

      IF (trans_flag == dbcsr_transpose) THEN
         trans_flag = dbcsr_no_transpose
      ELSEIF (trans_flag == dbcsr_no_transpose) THEN
         trans_flag = dbcsr_transpose
      END IF
   END SUBROUTINE

   SUBROUTINE index_linked_sort(ind_ref, ind_dep)
      INTEGER, DIMENSION(:), INTENT(INOUT) :: ind_ref, ind_dep
      INTEGER, DIMENSION(SIZE(ind_ref))    :: sort_indices

      CALL sort(ind_ref, SIZE(ind_ref), sort_indices)
      ind_dep(:) = ind_dep(sort_indices)

   END SUBROUTINE

   FUNCTION opt_pgrid(tensor, tas_split_info)
      TYPE(dbcsr_t_type), INTENT(IN) :: tensor
      TYPE(dbcsr_tas_split_info), INTENT(IN) :: tas_split_info
      INTEGER, DIMENSION(ndims_matrix_row(tensor)) :: map1
      INTEGER, DIMENSION(ndims_matrix_column(tensor)) :: map2
      TYPE(dbcsr_t_pgrid_type) :: opt_pgrid
      INTEGER, DIMENSION(ndims_tensor(tensor)) :: dims

      CALL dbcsr_t_get_mapping_info(tensor%pgrid%nd_index_grid, map1_2d=map1, map2_2d=map2)
      CALL blk_dims_tensor(tensor, dims)
      opt_pgrid = dbcsr_t_nd_mp_comm(tas_split_info%mp_comm, map1, map2, tdims=dims)

      ALLOCATE (opt_pgrid%tas_split_info, SOURCE=tas_split_info)
      CALL dbcsr_tas_info_hold(opt_pgrid%tas_split_info)
   END FUNCTION

   SUBROUTINE dbcsr_t_remap(tensor_in, map1_2d, map2_2d, tensor_out, comm_2d, dist1, dist2, &
                            mp_dims_1, mp_dims_2, name, nodata, move_data)
      !! Copy tensor to tensor with modified index mapping

      TYPE(dbcsr_t_type), INTENT(INOUT)      :: tensor_in
      INTEGER, DIMENSION(:), INTENT(IN)      :: map1_2d, map2_2d
         !! new index mapping
         !! new index mapping
      TYPE(dbcsr_t_type), INTENT(OUT)        :: tensor_out
      CHARACTER(len=*), INTENT(IN), OPTIONAL :: name
      LOGICAL, INTENT(IN), OPTIONAL          :: nodata, move_data
      TYPE(mp_comm_type), INTENT(IN), OPTIONAL          :: comm_2d
      TYPE(array_list), INTENT(IN), OPTIONAL :: dist1, dist2
      INTEGER, DIMENSION(SIZE(map1_2d)), OPTIONAL :: mp_dims_1
      INTEGER, DIMENSION(SIZE(map2_2d)), OPTIONAL :: mp_dims_2
      CHARACTER(len=default_string_length)   :: name_tmp
      INTEGER, DIMENSION(:), ALLOCATABLE     :: blk_sizes_1, blk_sizes_2, blk_sizes_3, blk_sizes_4, &
                                                nd_dist_1, nd_dist_2, nd_dist_3, nd_dist_4
      TYPE(dbcsr_t_distribution_type)        :: dist
      INTEGER                                :: handle, i
      INTEGER, DIMENSION(ndims_tensor(tensor_in)) :: pdims, myploc
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_remap'
      LOGICAL                               :: nodata_prv
      TYPE(dbcsr_t_pgrid_type)              :: comm_nd
      TYPE(mp_comm_type) :: comm_2d_prv

      CALL timeset(routineN, handle)

      IF (PRESENT(name)) THEN
         name_tmp = name
      ELSE
         name_tmp = tensor_in%name
      END IF
      IF (PRESENT(dist1)) THEN
         DBCSR_ASSERT(PRESENT(mp_dims_1))
      END IF

      IF (PRESENT(dist2)) THEN
         DBCSR_ASSERT(PRESENT(mp_dims_2))
      END IF

      IF (PRESENT(comm_2d)) THEN
         comm_2d_prv = comm_2d
      ELSE
         comm_2d_prv = tensor_in%pgrid%mp_comm_2d
      END IF

      comm_nd = dbcsr_t_nd_mp_comm(comm_2d_prv, map1_2d, map2_2d, dims1_nd=mp_dims_1, dims2_nd=mp_dims_2)
      CALL mp_environ_pgrid(comm_nd, pdims, myploc)

# 1655 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 2) THEN
            CALL get_arrays(tensor_in%blk_sizes, blk_sizes_1, blk_sizes_2)
         END IF
# 1655 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 3) THEN
            CALL get_arrays(tensor_in%blk_sizes, blk_sizes_1, blk_sizes_2, blk_sizes_3)
         END IF
# 1655 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 4) THEN
            CALL get_arrays(tensor_in%blk_sizes, blk_sizes_1, blk_sizes_2, blk_sizes_3, blk_sizes_4)
         END IF
# 1659 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

# 1661 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 2) THEN
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 1)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 1) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_1)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 1)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 1) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_1)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_1)) THEN
                  ALLOCATE (nd_dist_1 (SIZE(blk_sizes_1)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_1), pdims(1), blk_sizes_1, nd_dist_1)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 2)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 2) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_2)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 2)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 2) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_2)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_2)) THEN
                  ALLOCATE (nd_dist_2 (SIZE(blk_sizes_2)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_2), pdims(2), blk_sizes_2, nd_dist_2)
               END IF
# 1682 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            CALL dbcsr_t_distribution_new_expert(dist, comm_nd, map1_2d, map2_2d, &
                                                 nd_dist_1, nd_dist_2, own_comm=.TRUE.)
         END IF
# 1661 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 3) THEN
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 1)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 1) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_1)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 1)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 1) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_1)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_1)) THEN
                  ALLOCATE (nd_dist_1 (SIZE(blk_sizes_1)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_1), pdims(1), blk_sizes_1, nd_dist_1)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 2)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 2) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_2)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 2)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 2) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_2)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_2)) THEN
                  ALLOCATE (nd_dist_2 (SIZE(blk_sizes_2)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_2), pdims(2), blk_sizes_2, nd_dist_2)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 3)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 3) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_3)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 3)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 3) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_3)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_3)) THEN
                  ALLOCATE (nd_dist_3 (SIZE(blk_sizes_3)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_3), pdims(3), blk_sizes_3, nd_dist_3)
               END IF
# 1682 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            CALL dbcsr_t_distribution_new_expert(dist, comm_nd, map1_2d, map2_2d, &
                                                 nd_dist_1, nd_dist_2, nd_dist_3, own_comm=.TRUE.)
         END IF
# 1661 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 4) THEN
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 1)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 1) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_1)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 1)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 1) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_1)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_1)) THEN
                  ALLOCATE (nd_dist_1 (SIZE(blk_sizes_1)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_1), pdims(1), blk_sizes_1, nd_dist_1)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 2)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 2) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_2)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 2)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 2) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_2)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_2)) THEN
                  ALLOCATE (nd_dist_2 (SIZE(blk_sizes_2)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_2), pdims(2), blk_sizes_2, nd_dist_2)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 3)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 3) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_3)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 3)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 3) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_3)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_3)) THEN
                  ALLOCATE (nd_dist_3 (SIZE(blk_sizes_3)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_3), pdims(3), blk_sizes_3, nd_dist_3)
               END IF
# 1663 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
               IF (PRESENT(dist1)) THEN
                  IF (ANY(map1_2d == 4)) THEN
                     i = MINLOC(map1_2d, dim=1, mask=map1_2d == 4) ! i is location of idim in map1_2d
                     CALL get_ith_array(dist1, i, nd_dist_4)
                  END IF
               END IF

               IF (PRESENT(dist2)) THEN
                  IF (ANY(map2_2d == 4)) THEN
                     i = MINLOC(map2_2d, dim=1, mask=map2_2d == 4) ! i is location of idim in map2_2d
                     CALL get_ith_array(dist2, i, nd_dist_4)
                  END IF
               END IF

               IF (.NOT. ALLOCATED(nd_dist_4)) THEN
                  ALLOCATE (nd_dist_4 (SIZE(blk_sizes_4)))
                  CALL dbcsr_t_default_distvec(SIZE(blk_sizes_4), pdims(4), blk_sizes_4, nd_dist_4)
               END IF
# 1682 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            CALL dbcsr_t_distribution_new_expert(dist, comm_nd, map1_2d, map2_2d, &
                                                 nd_dist_1, nd_dist_2, nd_dist_3, nd_dist_4, own_comm=.TRUE.)
         END IF
# 1686 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

# 1688 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 2) THEN
            CALL dbcsr_t_create(tensor_out, name_tmp, dist, &
                                map1_2d, map2_2d, dbcsr_tas_get_data_type(tensor_in%matrix_rep), &
                                blk_sizes_1, blk_sizes_2)
         END IF
# 1688 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 3) THEN
            CALL dbcsr_t_create(tensor_out, name_tmp, dist, &
                                map1_2d, map2_2d, dbcsr_tas_get_data_type(tensor_in%matrix_rep), &
                                blk_sizes_1, blk_sizes_2, blk_sizes_3)
         END IF
# 1688 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor_in) == 4) THEN
            CALL dbcsr_t_create(tensor_out, name_tmp, dist, &
                                map1_2d, map2_2d, dbcsr_tas_get_data_type(tensor_in%matrix_rep), &
                                blk_sizes_1, blk_sizes_2, blk_sizes_3, blk_sizes_4)
         END IF
# 1694 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

      IF (PRESENT(nodata)) THEN
         nodata_prv = nodata
      ELSE
         nodata_prv = .FALSE.
      END IF

      IF (.NOT. nodata_prv) CALL dbcsr_t_copy_expert(tensor_in, tensor_out, move_data=move_data)
      CALL dbcsr_t_distribution_destroy(dist)

      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_align_index(tensor_in, tensor_out, order)
      !! Align index with data

      TYPE(dbcsr_t_type), INTENT(INOUT)               :: tensor_in
      TYPE(dbcsr_t_type), INTENT(OUT)                 :: tensor_out
      INTEGER, DIMENSION(ndims_matrix_row(tensor_in)) :: map1_2d
      INTEGER, DIMENSION(ndims_matrix_column(tensor_in)) :: map2_2d
      INTEGER, DIMENSION(ndims_tensor(tensor_in)), &
         INTENT(OUT), OPTIONAL                        :: order
         !! permutation resulting from alignment
      INTEGER, DIMENSION(ndims_tensor(tensor_in))     :: order_prv
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_align_index'
      INTEGER                                         :: handle

      CALL timeset(routineN, handle)

      CALL dbcsr_t_get_mapping_info(tensor_in%nd_index_blk, map1_2d=map1_2d, map2_2d=map2_2d)
      order_prv = dbcsr_t_inverse_order([map1_2d, map2_2d])
      CALL dbcsr_t_permute_index(tensor_in, tensor_out, order=order_prv)

      IF (PRESENT(order)) order = order_prv

      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_permute_index(tensor_in, tensor_out, order)
      !! Create new tensor by reordering index, data is copied exactly (shallow copy)
      TYPE(dbcsr_t_type), INTENT(INOUT)                  :: tensor_in
      TYPE(dbcsr_t_type), INTENT(OUT)                 :: tensor_out
      INTEGER, DIMENSION(ndims_tensor(tensor_in)), &
         INTENT(IN)                                   :: order

      TYPE(nd_to_2d_mapping)                          :: nd_index_blk_rs, nd_index_rs
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_permute_index'
      INTEGER                                         :: handle
      INTEGER                                         :: ndims

      CALL timeset(routineN, handle)

      ndims = ndims_tensor(tensor_in)

      CALL permute_index(tensor_in%nd_index, nd_index_rs, order)
      CALL permute_index(tensor_in%nd_index_blk, nd_index_blk_rs, order)
      CALL permute_index(tensor_in%pgrid%nd_index_grid, tensor_out%pgrid%nd_index_grid, order)

      tensor_out%matrix_rep => tensor_in%matrix_rep
      tensor_out%owns_matrix = .FALSE.

      tensor_out%nd_index = nd_index_rs
      tensor_out%nd_index_blk = nd_index_blk_rs
      tensor_out%pgrid%mp_comm_2d = tensor_in%pgrid%mp_comm_2d
      IF (ALLOCATED(tensor_in%pgrid%tas_split_info)) THEN
         ALLOCATE (tensor_out%pgrid%tas_split_info, SOURCE=tensor_in%pgrid%tas_split_info)
      END IF
      tensor_out%refcount => tensor_in%refcount
      CALL dbcsr_t_hold(tensor_out)

      CALL reorder_arrays(tensor_in%blk_sizes, tensor_out%blk_sizes, order)
      CALL reorder_arrays(tensor_in%blk_offsets, tensor_out%blk_offsets, order)
      CALL reorder_arrays(tensor_in%nd_dist, tensor_out%nd_dist, order)
      CALL reorder_arrays(tensor_in%blks_local, tensor_out%blks_local, order)
      ALLOCATE (tensor_out%nblks_local(ndims))
      ALLOCATE (tensor_out%nfull_local(ndims))
      tensor_out%nblks_local(order) = tensor_in%nblks_local(:)
      tensor_out%nfull_local(order) = tensor_in%nfull_local(:)
      tensor_out%name = tensor_in%name
      tensor_out%valid = .TRUE.

      IF (ALLOCATED(tensor_in%contraction_storage)) THEN
         ALLOCATE (tensor_out%contraction_storage, SOURCE=tensor_in%contraction_storage)
         CALL destroy_array_list(tensor_out%contraction_storage%batch_ranges)
         CALL reorder_arrays(tensor_in%contraction_storage%batch_ranges, tensor_out%contraction_storage%batch_ranges, order)
      END IF

      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_contract_index(alpha, tensor_1, tensor_2, beta, tensor_3, &
                                     contract_1, notcontract_1, &
                                     contract_2, notcontract_2, &
                                     map_1, map_2, &
                                     bounds_1, bounds_2, bounds_3, &
                                     filter_eps, &
                                     nblks_local, result_index)
      !! get indices of non-zero tensor blocks for contraction result without actually
      !! performing contraction.
      !! this is an estimate based on block norm multiplication.
      !! See documentation of dbcsr_t_contract.
      TYPE(dbcsr_scalar_type), INTENT(IN)            :: alpha
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_1
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_2
      TYPE(dbcsr_scalar_type), INTENT(IN)            :: beta
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: contract_2
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: map_2
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_1
      INTEGER, DIMENSION(:), INTENT(IN)              :: notcontract_2
      TYPE(dbcsr_t_type), INTENT(INOUT), TARGET      :: tensor_3
      INTEGER, DIMENSION(2, SIZE(contract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_1
      INTEGER, DIMENSION(2, SIZE(notcontract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_2
      INTEGER, DIMENSION(2, SIZE(notcontract_2)), &
         INTENT(IN), OPTIONAL                        :: bounds_3
      REAL(KIND=real_8), INTENT(IN), OPTIONAL        :: filter_eps
      INTEGER, INTENT(OUT)                           :: nblks_local
         !! number of local blocks on this MPI rank
      INTEGER, DIMENSION(dbcsr_t_max_nblks_local(tensor_3), ndims_tensor(tensor_3)), &
         INTENT(OUT)                                 :: result_index
         !! indices of local non-zero tensor blocks for tensor_3
         !! only the elements result_index(:nblks_local, :) are relevant (all others are set to 0)

      CALL dbcsr_t_contract_expert(alpha, tensor_1, tensor_2, beta, tensor_3, &
                                   contract_1, notcontract_1, &
                                   contract_2, notcontract_2, &
                                   map_1, map_2, &
                                   bounds_1=bounds_1, &
                                   bounds_2=bounds_2, &
                                   bounds_3=bounds_3, &
                                   filter_eps=filter_eps, &
                                   nblks_local=nblks_local, &
                                   result_index=result_index)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_map_bounds_to_tensors(tensor_1, tensor_2, &
                                            contract_1, notcontract_1, &
                                            contract_2, notcontract_2, &
                                            bounds_t1, bounds_t2, &
                                            bounds_1, bounds_2, bounds_3, &
                                            do_crop_1, do_crop_2)
      !! Map contraction bounds to bounds referring to tensor indices
      !! see dbcsr_t_contract for docu of dummy arguments

      TYPE(dbcsr_t_type), INTENT(IN)      :: tensor_1, tensor_2
      INTEGER, DIMENSION(:), INTENT(IN)   :: contract_1, contract_2, &
                                             notcontract_1, notcontract_2
      INTEGER, DIMENSION(2, ndims_tensor(tensor_1)), &
         INTENT(OUT)                                 :: bounds_t1
         !! bounds mapped to tensor_1
      INTEGER, DIMENSION(2, ndims_tensor(tensor_2)), &
         INTENT(OUT)                                 :: bounds_t2
         !! bounds mapped to tensor_2
      INTEGER, DIMENSION(2, SIZE(contract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_1
      INTEGER, DIMENSION(2, SIZE(notcontract_1)), &
         INTENT(IN), OPTIONAL                        :: bounds_2
      INTEGER, DIMENSION(2, SIZE(notcontract_2)), &
         INTENT(IN), OPTIONAL                        :: bounds_3
      LOGICAL, INTENT(OUT), OPTIONAL                 :: do_crop_1, do_crop_2
         !! whether tensor 1 should be cropped
         !! whether tensor 2 should be cropped
      LOGICAL, DIMENSION(2)                          :: do_crop

      do_crop = .FALSE.

      bounds_t1(1, :) = 1
      CALL dbcsr_t_get_info(tensor_1, nfull_total=bounds_t1(2, :))

      bounds_t2(1, :) = 1
      CALL dbcsr_t_get_info(tensor_2, nfull_total=bounds_t2(2, :))

      IF (PRESENT(bounds_1)) THEN
         bounds_t1(:, contract_1) = bounds_1
         do_crop(1) = .TRUE.
         bounds_t2(:, contract_2) = bounds_1
         do_crop(2) = .TRUE.
      END IF

      IF (PRESENT(bounds_2)) THEN
         bounds_t1(:, notcontract_1) = bounds_2
         do_crop(1) = .TRUE.
      END IF

      IF (PRESENT(bounds_3)) THEN
         bounds_t2(:, notcontract_2) = bounds_3
         do_crop(2) = .TRUE.
      END IF

      IF (PRESENT(do_crop_1)) do_crop_1 = do_crop(1)
      IF (PRESENT(do_crop_2)) do_crop_2 = do_crop(2)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_print_contraction_index(tensor_1, indchar1, tensor_2, indchar2, tensor_3, indchar3, unit_nr)
      !! print tensor contraction indices in a human readable way

      TYPE(dbcsr_t_type), INTENT(IN) :: tensor_1, tensor_2, tensor_3
      CHARACTER(LEN=1), DIMENSION(ndims_tensor(tensor_1)), INTENT(IN) :: indchar1
         !! characters printed for index of tensor 1
      CHARACTER(LEN=1), DIMENSION(ndims_tensor(tensor_2)), INTENT(IN) :: indchar2
         !! characters printed for index of tensor 2
      CHARACTER(LEN=1), DIMENSION(ndims_tensor(tensor_3)), INTENT(IN) :: indchar3
         !! characters printed for index of tensor 3
      INTEGER, INTENT(IN) :: unit_nr
         !! output unit
      INTEGER, DIMENSION(ndims_matrix_row(tensor_1)) :: map11
      INTEGER, DIMENSION(ndims_matrix_column(tensor_1)) :: map12
      INTEGER, DIMENSION(ndims_matrix_row(tensor_2)) :: map21
      INTEGER, DIMENSION(ndims_matrix_column(tensor_2)) :: map22
      INTEGER, DIMENSION(ndims_matrix_row(tensor_3)) :: map31
      INTEGER, DIMENSION(ndims_matrix_column(tensor_3)) :: map32
      INTEGER :: ichar1, ichar2, ichar3, unit_nr_prv

      unit_nr_prv = prep_output_unit(unit_nr)

      IF (unit_nr_prv /= 0) THEN
         CALL dbcsr_t_get_mapping_info(tensor_1%nd_index_blk, map1_2d=map11, map2_2d=map12)
         CALL dbcsr_t_get_mapping_info(tensor_2%nd_index_blk, map1_2d=map21, map2_2d=map22)
         CALL dbcsr_t_get_mapping_info(tensor_3%nd_index_blk, map1_2d=map31, map2_2d=map32)
      END IF

      IF (unit_nr_prv > 0) THEN
         WRITE (unit_nr_prv, '(T2,A)') "INDEX INFO"
         WRITE (unit_nr_prv, '(T15,A)', advance='no') "tensor index: ("
         DO ichar1 = 1, SIZE(indchar1)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar1(ichar1)
         END DO
         WRITE (unit_nr_prv, '(A)', advance='no') ") x ("
         DO ichar2 = 1, SIZE(indchar2)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar2(ichar2)
         END DO
         WRITE (unit_nr_prv, '(A)', advance='no') ") = ("
         DO ichar3 = 1, SIZE(indchar3)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar3(ichar3)
         END DO
         WRITE (unit_nr_prv, '(A)') ")"

         WRITE (unit_nr_prv, '(T15,A)', advance='no') "matrix index: ("
         DO ichar1 = 1, SIZE(map11)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar1(map11(ichar1))
         END DO
         WRITE (unit_nr_prv, '(A1)', advance='no') "|"
         DO ichar1 = 1, SIZE(map12)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar1(map12(ichar1))
         END DO
         WRITE (unit_nr_prv, '(A)', advance='no') ") x ("
         DO ichar2 = 1, SIZE(map21)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar2(map21(ichar2))
         END DO
         WRITE (unit_nr_prv, '(A1)', advance='no') "|"
         DO ichar2 = 1, SIZE(map22)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar2(map22(ichar2))
         END DO
         WRITE (unit_nr_prv, '(A)', advance='no') ") = ("
         DO ichar3 = 1, SIZE(map31)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar3(map31(ichar3))
         END DO
         WRITE (unit_nr_prv, '(A1)', advance='no') "|"
         DO ichar3 = 1, SIZE(map32)
            WRITE (unit_nr_prv, '(A1)', advance='no') indchar3(map32(ichar3))
         END DO
         WRITE (unit_nr_prv, '(A)') ")"
      END IF

   END SUBROUTINE

   SUBROUTINE dbcsr_t_batched_contract_init(tensor, batch_range_1, batch_range_2, batch_range_3, batch_range_4)
      !! Initialize batched contraction for this tensor.
      !!
      !! Explanation: A batched contraction is a contraction performed in several consecutive steps by
      !! specification of bounds in dbcsr_t_contract. This can be used to reduce memory by a large factor.
      !! The routines dbcsr_t_batched_contract_init and dbcsr_t_batched_contract_finalize should be
      !! called to define the scope of a batched contraction as this enables important optimizations
      !! (adapting communication scheme to batches and adapting process grid to multiplication algorithm).
      !! The routines dbcsr_t_batched_contract_init and dbcsr_t_batched_contract_finalize must be called
      !! before the first and after the last contraction step on all 3 tensors.
      !!
      !! Requirements:
      !! - the tensors are in a compatible matrix layout (see documentation of `dbcsr_t_contract`, note 2 & 3).
      !!   If they are not, process grid optimizations are disabled and a warning is issued.
      !! - within the scope of a batched contraction, it is not allowed to access or change tensor data
      !!   except by calling the routines dbcsr_t_contract & dbcsr_t_copy.
      !! - the bounds affecting indices of the smallest tensor must not change in the course of a batched
      !!   contraction (todo: get rid of this requirement).
      !!
      !! Side effects:
      !! - the parallel layout (process grid and distribution) of all tensors may change. In order to
      !!   disable the process grid optimization including this side effect, call this routine only on the
      !!   smallest of the 3 tensors.
      !!
      !! @note
      !! Note 1: for an example of batched contraction see `examples/dbcsr_tensor_example.F`.
      !! (todo: the example is outdated and should be updated).
      !!
      !! Note 2: it is meaningful to use this feature if the contraction consists of one batch only
      !! but if multiple contractions involving the same 3 tensors are performed
      !! (batched_contract_init and batched_contract_finalize must then be called before/after each
      !! contraction call). The process grid is then optimized after the first contraction
      !! and future contraction may profit from this optimization.
      !! @endnote
      TYPE(dbcsr_t_type), INTENT(INOUT) :: tensor
      INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN)        :: batch_range_1, batch_range_2, batch_range_3, batch_range_4
         !! For internal load balancing optimizations, optionally specify the index ranges of
         !! batched contraction.
         !! batch_range_i refers to the ith tensor dimension and contains all block indices starting
         !! a new range. The size should be the number of ranges plus one, the last element being the
         !! block index plus one of the last block in the last range.
      INTEGER, DIMENSION(ndims_tensor(tensor)) :: tdims
      INTEGER, DIMENSION(:), ALLOCATABLE                 :: batch_range_prv_1, batch_range_prv_2, batch_range_prv_3,&
# 2006 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
          & batch_range_prv_4
      LOGICAL :: static_range

      CALL dbcsr_t_get_info(tensor, nblks_total=tdims)

      static_range = .TRUE.
# 2013 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 1) THEN
            IF (PRESENT(batch_range_1)) THEN
               CALL allocate_any(batch_range_prv_1, source=batch_range_1)
               static_range = .FALSE.
            ELSE
               ALLOCATE (batch_range_prv_1 (2))
               batch_range_prv_1 (1) = 1
               batch_range_prv_1 (2) = tdims(1) + 1
            END IF
         END IF
# 2013 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 2) THEN
            IF (PRESENT(batch_range_2)) THEN
               CALL allocate_any(batch_range_prv_2, source=batch_range_2)
               static_range = .FALSE.
            ELSE
               ALLOCATE (batch_range_prv_2 (2))
               batch_range_prv_2 (1) = 1
               batch_range_prv_2 (2) = tdims(2) + 1
            END IF
         END IF
# 2013 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 3) THEN
            IF (PRESENT(batch_range_3)) THEN
               CALL allocate_any(batch_range_prv_3, source=batch_range_3)
               static_range = .FALSE.
            ELSE
               ALLOCATE (batch_range_prv_3 (2))
               batch_range_prv_3 (1) = 1
               batch_range_prv_3 (2) = tdims(3) + 1
            END IF
         END IF
# 2013 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 4) THEN
            IF (PRESENT(batch_range_4)) THEN
               CALL allocate_any(batch_range_prv_4, source=batch_range_4)
               static_range = .FALSE.
            ELSE
               ALLOCATE (batch_range_prv_4 (2))
               batch_range_prv_4 (1) = 1
               batch_range_prv_4 (2) = tdims(4) + 1
            END IF
         END IF
# 2024 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

      ALLOCATE (tensor%contraction_storage)
      tensor%contraction_storage%static = static_range
      IF (static_range) THEN
         CALL dbcsr_tas_batched_mm_init(tensor%matrix_rep)
      END IF
      tensor%contraction_storage%nsplit_avg = 0.0_real_8
      tensor%contraction_storage%ibatch = 0

# 2034 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 1) THEN
            CALL create_array_list(tensor%contraction_storage%batch_ranges, 1, &
                                   batch_range_prv_1)
         END IF
# 2034 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 2) THEN
            CALL create_array_list(tensor%contraction_storage%batch_ranges, 2, &
                                   batch_range_prv_1, batch_range_prv_2)
         END IF
# 2034 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 3) THEN
            CALL create_array_list(tensor%contraction_storage%batch_ranges, 3, &
                                   batch_range_prv_1, batch_range_prv_2, batch_range_prv_3)
         END IF
# 2034 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 4) THEN
            CALL create_array_list(tensor%contraction_storage%batch_ranges, 4, &
                                   batch_range_prv_1, batch_range_prv_2, batch_range_prv_3, batch_range_prv_4)
         END IF
# 2039 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

   END SUBROUTINE

   SUBROUTINE dbcsr_t_batched_contract_finalize(tensor, unit_nr)
      !! finalize batched contraction. This performs all communication that has been postponed in the
      !! contraction calls.
      TYPE(dbcsr_t_type), INTENT(INOUT) :: tensor
      INTEGER, INTENT(IN), OPTIONAL :: unit_nr
      LOGICAL :: do_write
      INTEGER :: unit_nr_prv, handle

      CALL mp_sync(tensor%pgrid%mp_comm_2d)
      CALL timeset("dbcsr_t_total", handle)
      unit_nr_prv = prep_output_unit(unit_nr)

      do_write = .FALSE.

      IF (tensor%contraction_storage%static) THEN
         IF (tensor%matrix_rep%do_batched > 0) THEN
            IF (tensor%matrix_rep%mm_storage%batched_out) do_write = .TRUE.
         END IF
         CALL dbcsr_tas_batched_mm_finalize(tensor%matrix_rep)
      END IF

      IF (do_write .AND. unit_nr_prv /= 0) THEN
         IF (unit_nr_prv > 0) THEN
            WRITE (unit_nr_prv, "(T2,A)") &
               "FINALIZING BATCHED PROCESSING OF MATMUL"
         END IF
         CALL dbcsr_t_write_tensor_info(tensor, unit_nr_prv)
         CALL dbcsr_t_write_tensor_dist(tensor, unit_nr_prv)
      END IF

      CALL destroy_array_list(tensor%contraction_storage%batch_ranges)
      DEALLOCATE (tensor%contraction_storage)
      CALL mp_sync(tensor%pgrid%mp_comm_2d)
      CALL timestop(handle)

   END SUBROUTINE

   SUBROUTINE dbcsr_t_change_pgrid(tensor, pgrid, batch_range_1, batch_range_2, batch_range_3, batch_range_4, &
                                   nodata, pgrid_changed, unit_nr)
      !! change the process grid of a tensor
      TYPE(dbcsr_t_type), INTENT(INOUT)                  :: tensor
      TYPE(dbcsr_t_pgrid_type), INTENT(IN)               :: pgrid
      INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN)        :: batch_range_1, batch_range_2, batch_range_3, batch_range_4
         !! For internal load balancing optimizations, optionally specify the index ranges of
         !! batched contraction.
         !! batch_range_i refers to the ith tensor dimension and contains all block indices starting
         !! a new range. The size should be the number of ranges plus one, the last element being the
         !! block index plus one of the last block in the last range.
      LOGICAL, INTENT(IN), OPTIONAL                      :: nodata
         !! optionally don't copy the tensor data (then tensor is empty on returned)
      LOGICAL, INTENT(OUT), OPTIONAL                     :: pgrid_changed
      INTEGER, INTENT(IN), OPTIONAL                      :: unit_nr
      CHARACTER(LEN=*), PARAMETER :: routineN = 'dbcsr_t_change_pgrid'
      CHARACTER(default_string_length)                   :: name
      INTEGER                                            :: handle
      INTEGER, ALLOCATABLE, DIMENSION(:)                 :: bs_1, bs_2, bs_3, bs_4, &
                                                            dist_1, dist_2, dist_3, dist_4
      INTEGER, DIMENSION(ndims_tensor(tensor))           :: pcoord, pcoord_ref, pdims, pdims_ref, &
                                                            tdims
      TYPE(dbcsr_t_type)                                 :: t_tmp
      TYPE(dbcsr_t_distribution_type)                    :: dist
      INTEGER, DIMENSION(ndims_matrix_row(tensor)) :: map1
      INTEGER, &
         DIMENSION(ndims_matrix_column(tensor))    :: map2
      LOGICAL, DIMENSION(ndims_tensor(tensor))             :: mem_aware
      INTEGER, DIMENSION(ndims_tensor(tensor)) :: nbatch
      INTEGER :: ind1, ind2, batch_size, ibatch

      IF (PRESENT(pgrid_changed)) pgrid_changed = .FALSE.
      CALL mp_environ_pgrid(pgrid, pdims, pcoord)
      CALL mp_environ_pgrid(tensor%pgrid, pdims_ref, pcoord_ref)

      IF (ALL(pdims == pdims_ref)) THEN
         IF (ALLOCATED(pgrid%tas_split_info) .AND. ALLOCATED(tensor%pgrid%tas_split_info)) THEN
            IF (pgrid%tas_split_info%ngroup == tensor%pgrid%tas_split_info%ngroup) THEN
               RETURN
            END IF
         END IF
      END IF

      CALL timeset(routineN, handle)

# 2125 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 1) THEN
            mem_aware(1) = PRESENT(batch_range_1)
            IF (mem_aware(1)) nbatch(1) = SIZE(batch_range_1) - 1
         END IF
# 2125 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 2) THEN
            mem_aware(2) = PRESENT(batch_range_2)
            IF (mem_aware(2)) nbatch(2) = SIZE(batch_range_2) - 1
         END IF
# 2125 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 3) THEN
            mem_aware(3) = PRESENT(batch_range_3)
            IF (mem_aware(3)) nbatch(3) = SIZE(batch_range_3) - 1
         END IF
# 2125 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 4) THEN
            mem_aware(4) = PRESENT(batch_range_4)
            IF (mem_aware(4)) nbatch(4) = SIZE(batch_range_4) - 1
         END IF
# 2130 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

      CALL dbcsr_t_get_info(tensor, nblks_total=tdims, name=name)

# 2134 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 1) THEN
            ALLOCATE (bs_1 (dbcsr_t_nblks_total(tensor, 1)))
            CALL get_ith_array(tensor%blk_sizes, 1, bs_1)
            ALLOCATE (dist_1 (tdims(1)))
            dist_1 = 0
            IF (mem_aware(1)) THEN
               DO ibatch = 1, nbatch(1)
                  ind1 = batch_range_1 (ibatch)
                  ind2 = batch_range_1 (ibatch + 1) - 1
                  batch_size = ind2 - ind1 + 1
                  CALL dbcsr_t_default_distvec(batch_size, pdims(1), &
                                               bs_1 (ind1:ind2), dist_1 (ind1:ind2))
               END DO
            ELSE
               CALL dbcsr_t_default_distvec(tdims(1), pdims(1), bs_1, dist_1)
            END IF
         END IF
# 2134 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 2) THEN
            ALLOCATE (bs_2 (dbcsr_t_nblks_total(tensor, 2)))
            CALL get_ith_array(tensor%blk_sizes, 2, bs_2)
            ALLOCATE (dist_2 (tdims(2)))
            dist_2 = 0
            IF (mem_aware(2)) THEN
               DO ibatch = 1, nbatch(2)
                  ind1 = batch_range_2 (ibatch)
                  ind2 = batch_range_2 (ibatch + 1) - 1
                  batch_size = ind2 - ind1 + 1
                  CALL dbcsr_t_default_distvec(batch_size, pdims(2), &
                                               bs_2 (ind1:ind2), dist_2 (ind1:ind2))
               END DO
            ELSE
               CALL dbcsr_t_default_distvec(tdims(2), pdims(2), bs_2, dist_2)
            END IF
         END IF
# 2134 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 3) THEN
            ALLOCATE (bs_3 (dbcsr_t_nblks_total(tensor, 3)))
            CALL get_ith_array(tensor%blk_sizes, 3, bs_3)
            ALLOCATE (dist_3 (tdims(3)))
            dist_3 = 0
            IF (mem_aware(3)) THEN
               DO ibatch = 1, nbatch(3)
                  ind1 = batch_range_3 (ibatch)
                  ind2 = batch_range_3 (ibatch + 1) - 1
                  batch_size = ind2 - ind1 + 1
                  CALL dbcsr_t_default_distvec(batch_size, pdims(3), &
                                               bs_3 (ind1:ind2), dist_3 (ind1:ind2))
               END DO
            ELSE
               CALL dbcsr_t_default_distvec(tdims(3), pdims(3), bs_3, dist_3)
            END IF
         END IF
# 2134 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) >= 4) THEN
            ALLOCATE (bs_4 (dbcsr_t_nblks_total(tensor, 4)))
            CALL get_ith_array(tensor%blk_sizes, 4, bs_4)
            ALLOCATE (dist_4 (tdims(4)))
            dist_4 = 0
            IF (mem_aware(4)) THEN
               DO ibatch = 1, nbatch(4)
                  ind1 = batch_range_4 (ibatch)
                  ind2 = batch_range_4 (ibatch + 1) - 1
                  batch_size = ind2 - ind1 + 1
                  CALL dbcsr_t_default_distvec(batch_size, pdims(4), &
                                               bs_4 (ind1:ind2), dist_4 (ind1:ind2))
               END DO
            ELSE
               CALL dbcsr_t_default_distvec(tdims(4), pdims(4), bs_4, dist_4)
            END IF
         END IF
# 2152 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"

      CALL dbcsr_t_get_mapping_info(tensor%nd_index_blk, map1_2d=map1, map2_2d=map2)
# 2155 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 2) THEN
            CALL dbcsr_t_distribution_new(dist, pgrid, dist_1, dist_2)
            CALL dbcsr_t_create(t_tmp, name, dist, map1, map2, dbcsr_type_real_8, bs_1, bs_2)
         END IF
# 2155 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 3) THEN
            CALL dbcsr_t_distribution_new(dist, pgrid, dist_1, dist_2, dist_3)
            CALL dbcsr_t_create(t_tmp, name, dist, map1, map2, dbcsr_type_real_8, bs_1, bs_2, bs_3)
         END IF
# 2155 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
         IF (ndims_tensor(tensor) == 4) THEN
            CALL dbcsr_t_distribution_new(dist, pgrid, dist_1, dist_2, dist_3, dist_4)
            CALL dbcsr_t_create(t_tmp, name, dist, map1, map2, dbcsr_type_real_8, bs_1, bs_2, bs_3, bs_4)
         END IF
# 2160 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
      CALL dbcsr_t_distribution_destroy(dist)

      IF (PRESENT(nodata)) THEN
         IF (.NOT. nodata) CALL dbcsr_t_copy_expert(tensor, t_tmp, move_data=.TRUE.)
      ELSE
         CALL dbcsr_t_copy_expert(tensor, t_tmp, move_data=.TRUE.)
      END IF

      CALL dbcsr_t_copy_contraction_storage(tensor, t_tmp)

      CALL dbcsr_t_destroy(tensor)
      tensor = t_tmp

      IF (PRESENT(unit_nr)) THEN
         IF (unit_nr > 0) THEN
            WRITE (unit_nr, "(T2,A,1X,A)") "OPTIMIZED PGRID INFO FOR", TRIM(tensor%name)
            WRITE (unit_nr, "(T4,A,1X,3I6)") "process grid dimensions:", pdims
            CALL dbcsr_t_write_split_info(pgrid, unit_nr)
         END IF
      END IF

      IF (PRESENT(pgrid_changed)) pgrid_changed = .TRUE.

      CALL timestop(handle)
   END SUBROUTINE

   SUBROUTINE dbcsr_t_change_pgrid_2d(tensor, mp_comm, pdims, nodata, nsplit, dimsplit, pgrid_changed, unit_nr)
      !! map tensor to a new 2d process grid for the matrix representation.
      TYPE(dbcsr_t_type), INTENT(INOUT)                  :: tensor
      TYPE(mp_comm_type), INTENT(IN)               :: mp_comm
      INTEGER, DIMENSION(2), INTENT(IN), OPTIONAL :: pdims
      LOGICAL, INTENT(IN), OPTIONAL                      :: nodata
      INTEGER, INTENT(IN), OPTIONAL :: nsplit, dimsplit
      LOGICAL, INTENT(OUT), OPTIONAL :: pgrid_changed
      INTEGER, INTENT(IN), OPTIONAL                      :: unit_nr
      INTEGER, DIMENSION(ndims_matrix_row(tensor)) :: map1
      INTEGER, DIMENSION(ndims_matrix_column(tensor)) :: map2
      INTEGER, DIMENSION(ndims_tensor(tensor)) :: dims, nbatches
      TYPE(dbcsr_t_pgrid_type) :: pgrid
      INTEGER, DIMENSION(:), ALLOCATABLE :: batch_range_1, batch_range_2, batch_range_3, batch_range_4
      INTEGER, DIMENSION(:), ALLOCATABLE :: array
      INTEGER :: idim

      CALL dbcsr_t_get_mapping_info(tensor%pgrid%nd_index_grid, map1_2d=map1, map2_2d=map2)
      CALL blk_dims_tensor(tensor, dims)

      IF (ALLOCATED(tensor%contraction_storage)) THEN
         ASSOCIATE (batch_ranges => tensor%contraction_storage%batch_ranges)
            nbatches = sizes_of_arrays(tensor%contraction_storage%batch_ranges) - 1
            ! for good load balancing the process grid dimensions should be chosen adapted to the
            ! tensor dimenions. For batched contraction the tensor dimensions should be divided by
            ! the number of batches (number of index ranges).
            DO idim = 1, ndims_tensor(tensor)
               CALL get_ith_array(tensor%contraction_storage%batch_ranges, idim, array)
               dims(idim) = array(nbatches(idim) + 1) - array(1)
               DEALLOCATE (array)
               dims(idim) = dims(idim)/nbatches(idim)
               IF (dims(idim) <= 0) dims(idim) = 1
            END DO
         END ASSOCIATE
      END IF

      pgrid = dbcsr_t_nd_mp_comm(mp_comm, map1, map2, pdims_2d=pdims, tdims=dims, nsplit=nsplit, dimsplit=dimsplit)
      IF (ALLOCATED(tensor%contraction_storage)) THEN
# 2225 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            IF (ndims_tensor(tensor) == 1) THEN
               CALL get_arrays(tensor%contraction_storage%batch_ranges, batch_range_1)
               CALL dbcsr_t_change_pgrid(tensor, pgrid, batch_range_1, &
                                         nodata=nodata, pgrid_changed=pgrid_changed, unit_nr=unit_nr)
            END IF
# 2225 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            IF (ndims_tensor(tensor) == 2) THEN
               CALL get_arrays(tensor%contraction_storage%batch_ranges, batch_range_1, batch_range_2)
               CALL dbcsr_t_change_pgrid(tensor, pgrid, batch_range_1, batch_range_2, &
                                         nodata=nodata, pgrid_changed=pgrid_changed, unit_nr=unit_nr)
            END IF
# 2225 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            IF (ndims_tensor(tensor) == 3) THEN
               CALL get_arrays(tensor%contraction_storage%batch_ranges, batch_range_1, batch_range_2, batch_range_3)
               CALL dbcsr_t_change_pgrid(tensor, pgrid, batch_range_1, batch_range_2, batch_range_3, &
                                         nodata=nodata, pgrid_changed=pgrid_changed, unit_nr=unit_nr)
            END IF
# 2225 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
            IF (ndims_tensor(tensor) == 4) THEN
               CALL get_arrays(tensor%contraction_storage%batch_ranges, batch_range_1, batch_range_2, batch_range_3, batch_range_4)
               CALL dbcsr_t_change_pgrid(tensor, pgrid, batch_range_1, batch_range_2, batch_range_3, batch_range_4, &
                                         nodata=nodata, pgrid_changed=pgrid_changed, unit_nr=unit_nr)
            END IF
# 2231 "/__w/dbcsr/dbcsr/src/tensors/dbcsr_tensor.F"
      ELSE
         CALL dbcsr_t_change_pgrid(tensor, pgrid, nodata=nodata, pgrid_changed=pgrid_changed, unit_nr=unit_nr)
      END IF
      CALL dbcsr_t_pgrid_destroy(pgrid)

   END SUBROUTINE

END MODULE